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Abstract. A multi-fidelity Gaussian process (MF-GP) is presented for the forward un-
certainty quantification (UQ) of the performance of an autonomous surface vehicle (ASV)
subject to uncertain operating conditions. The ASV is a shallow water autonomous multi-
purpose platform (SWAMP), designed for the acquisition of the environmental parameters
in the extremely shallow waters of wetlands. The quantity of interest (QoI) is the hydro-
dynamic resistance of the SWAMP subject to variable payload and longitudinal position
of its center of mass. The QoI is assessed by a linear potential-flow solver coupled with
the rigid body equations of motion. Multiple fidelity levels are defined based on the com-
putational grid size and the level of coupling between hydrodynamic loads and motions.
The MF-GP is based on a low-fidelity surrogate, corrected with an additive function,
representing the error between higher and lower fidelity solutions. The MF-GP provides
the prediction with the associated uncertainty. The latter is used to adaptively train the
MF-GP, adding points where the prediction uncertainty is maximum. Finally, the UQ of
the QoI is performed by Monte Carlo sampling on the MF-GP surrogate. The first four
statistical moments, the 95th percentile, and the probability density function of the QoI
are assessed. MF-GP is compared to its single-fidelity (high-fidelity based) counterpart,
showing overall better results.

1 INTRODUCTION

The operation planning of aerial, ground, and marine vehicles requires the accurate pre-
diction of their performance, to guarantee the success of the mission and the safety during
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the operations. The accurate prediction of the performance usually requires physics-
based high-fidelity solvers, especially for off-design conditions and innovative configura-
tion, which may produce non-linear responses or complex multi-physics interactions (e.g.,
plastic deformation of structures or hydroelasticity). High-fidelity solvers are generally
computationally expensive, making the exploration of the uncertain parameters space a
technological challenge. To reduce the computational cost of the uncertainty quantifica-
tion (UQ) process, multi-fidelity (MF) surrogate models have been developed [1]. A MF
surrogate model exploits the possibility of using several fidelities, using different solvers
and/or the same solver with different space/time discretization, as well as different cou-
pling level between several disciplines. Among other MF methods, co-Kriging [2] and
Gaussian process (GP) [3] have been successfully applied in several engineering fields.
To further reduce the computational cost of exploring the uncertain parameters space,
adaptive sampling methods can be used [4]. These methods aim to add training points
for the MF surrogate only where they are more informative, exploiting the information
that becomes available during the UQ process.

The objective of the present work is the assessment of a MF-GP surrogate model for the
forward UQ of the performance of an autonomous surface vehicle (ASV) with uncertain
operating conditions. The ASV is a shallow water autonomous multipurpose platform
(SWAMP) designed for the acquisition of the environmental parameters in the extremely
shallow waters of wetlands [5]. The quantity of interest (QoI) is the hydrodynamic resis-
tance of the SWAMP subject to variable payload and longitudinal position of its center
of mass. Both the uncertain parameters follow a uniform distribution.

The QoI is assessed by multi-disciplinary/multi-fidelity simulations. Specifically, an
in-house linear potential-flow solver coupled with the rigid body equations of motion [6] is
used. Three fidelity levels are defined based on the computational grid size and the level
(tightness) of the coupling between hydrodynamic loads and motion. The MF-GP is built
as a low-fidelity trained surrogate model corrected with the surrogate of the errors between
successive fidelities. The MF-GP training sets are dynamically updated with an adaptive
sampling method based on the maximum uncertainty associated to the MF-GP prediction.
The adaptive sampling method automatically selects the fidelity to sample, balancing
between the maximum prediction uncertainty and the computational cost associated to
each fidelity level [7]. The UQ of the QoI is achieved applying a Monte Carlo (MC)
sampling on the MF-GP surrogate model. The UQ provides the probability density
function (PDF) of the QoI, whose accuracy is evaluated by the Kolmogorov-Smirnov
(KS) test against a high-fidelity benchmark. Furthermore, the relative errors of the first
four statistical moments and the 95th percentile are reported. Finally, the performance
of the MF-GP is compared to its single-fidelity (high-fidelity based) counterpart.

2 MULTI-FIDELITY GAUSSIAN PROCESS

The following subsections describe the single-fidelity GP, its MF extension, and, finally,
the adaptive sampling procedure.
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2.1 Gaussian Process

Given a training set T = {x′i, f(x′i)}Ji=1, where x′ ∈ RD is the parameters vector of
dimension D and J the training set size, normalizing the parameters domain into a unit
hypercube, the GP prediction f̃(x) with constant mean and its variance Var[f̃(x)] can be
written as [8]

f̃(x) = E[f(x′)] + k(x,x′)K(x′,x′)−1(f(x′)− E[f(x′)]),

Var[f̃(x)] = K(x,x)− k(x,x′)TK(x′,x′)−1k(x,x′),
(1)

where E[f(x′)] is the expected value of {f(x′i)}Ji=1, K(x′,x′) is the covariance matrix with
elements Kij = k(x′i,x

′
j), and k(x,x′) is the covariance vector with elements ki = k(x,x′i).

Finally, k(·, ·) is the covariance function defined as [8]

k(x,x′) = σ2
F exp

(
−γT(x− x′)◦2

)
+ σ2

nδ(x,x
′), (2)

with ”◦” the Hadamard product, δ(x,x′) the Kronecker delta, and Λ = {σ2
n, σ

2
F ,γ} the

set of the GP hyper-parameters [8]. Specifically, σ2
n is the variance associated to the noise

in the training set, σ2
F is the signal variance, and γ ∈ RD is the vector of the inverse

length scale parameters. It can be noted that the use of the parameter σ2
n leads to a

regressive formulation of the GP. The hyper-parameters are evaluated by maximizing the
log marginal likelihood l [8] as follows

Λ? = {σ2,?
n , σ2,?

F ,γ?} = argmax
σ2
n,σ

2
F ,γ

[l], (3)

with

l = log [p(f(x′)|x′)] = −J
2

log 2π − 1

2
f(x′)TK(x′,x′)−1f(x′)− 1

2
log |K(x′,x′)|. (4)

The uncertainty Uf̃ , associated to the surrogate model prediction, is here quantified as

Uf̃ = 4

√
Var[f̃(x)]. (5)

It may be noted, that the present definition of Uf̃ incorporates the variance associated to
the noise in the training set.

2.2 Multi-fidelity Approach

Considering a QoI that can be evaluated with N fidelity levels (where the first level is
the highest-fidelity and the N -th level is the lowest-fidelity) the MF extension of the GP
is built as follows [9]. Given a training set Ti = {x′j, fi(x′j)}Jij=1 for i = 1, . . . , N , the MF

approximation f̂i(x) of fi(x) is defined as

f̂i(x) := f̃N(x) +
N−1∑
k=i

ε̃k(x), (6)
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where ε̃k(x) is the inter-level error surrogate with an associate training set Ek = {(x′i, fk(x′i)−
f̂k+1(x′i)) |x′i ∈ Tk ∩ Tk+1}Jki=1. Assuming the uncertainty associated to the prediction of
the lowest-fidelity Uf̃N and inter-level errors Uε̃k as uncorrelated, the MF approximation

f̂1(x) of f1(x) and the associated uncertainty Uf̂1 read

f1(x) ≈ f̂1(x) = f̃N(x) +
N−1∑
k=1

ε̃k(x), and Uf̂1(x) =

√√√√U2
f̃N

(x) +
N−1∑
k=1

U2
ε̃k

(x). (7)

2.3 Adaptive Sampling

The MF surrogate is iteratively updated adding new training points following an adap-
tive sampling procedure. First, the coordinates of the new training point x? are identified
based on the maximum uncertainty prediction [7], solving the single-objective maximiza-
tion problem

x? = argmax
x

[Uf̂1(x)]. (8)

Second, once x? is identified, the training set Ti is updated with the new training point
(x?, fi(x

?)) with i = k, . . . , N , where k is defined as

k = maxloc [V(x?)] , with V ≡


(Var[ε̃1]− σ2,?

n,ε̃1
− p1)/β1

...

(Var[ε̃N−1]− σ2,?
n,ε̃N−1

− pN−1)/βN−1

(Var[f̃N ]− σ2,?
n,fN
− pN)/βN

 (9)

where βi is the computational cost associated to the i-th fidelity level (normalized with
respect to the high-fidelity one) and pi is a penalization value. The latter is used to avoid
over-fitting of the training points, which would result in an ill-conditioned matrix while
solving Eqs. 1 and 3. The penalization pi is applied only if x? lies within a minimum
distance dmin of an already existing training point of Ti. In such a case pi is evaluated as

pi =

Ji∑
j=1

1

‖x? − x′j‖+ τ
, (10)

where τ = 0.01 is a scalar used only to avoid null value of the denominator in Eq. 10. The
subtraction of σ2,?

n from the variance of the prediction is performed to, ideally, filter-out
the noise from the training set while selecting the fidelity level to sample.

Once x? is added to the training set, the range of variation of the GP hyper-parameters
Λi for the i-th fidelity, are bounded as: Λi,j = ±αΛ?

i,j−1, where j is the adaptive sampling
iteration and α = 0.1 is a parameter used to avoid abrupt variations of the surrogate
model prediction.
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3 PROBLEM STATEMENT AND SET-UP

Figure 1 shows the ASV under investigation. The SWAMP is a full-electric modular
multi-functional catamaran. It can serve for various missions, such as geomorphological
analysis, water sampling, physical and chemical data collection also in harsh environment.
The SWAMP is conceived as collector for new research subjects like new control algorithms
also for robot cooperation and testing new propulsion units [5]. The hull shape is inspired
by the double-ended Wigley series and presents a flat bottom part, necessary to host the
pump-jet propulsion system. The hull form and propulsion system are characterized by
equally efficient sailing ahead and astern with the possibility of maneuvering in narrow
spaces. The main characteristics are: overall length L = 1.24 m, hull beam B = 0.245
m, overall width W = 1.1 m, and height H = 0.4 m. The operational speed is fixed at
u = 1.0 m/s.

Here, the QoI is the hydrodynamic resistance RT and the uncertain operational param-
eters are the vessel displacement and the position of the center of mass. The displacement
∇ (directly connected to the payload) varies depending on the type and purpose of the
survey. The nominal range of variation is set as ∇ ∼ unif[35, 60] kg. The center of mass
xG is positioned in the center of the hull (xG = 0 m) but can vary depending to the
payload arrangement. The nominal range of variation is set as xG ∼ unif[−0.093, 0.093]
m (corresponding to a variation of ±7.5% L of the nominal value). A negative value of
xG yields a forward translation (in direction of the bow) of the center of mass, whereas a
positive value yields a backward translation (in direction of the stern).

3.1 Computational Solver

The performance of the SWAMP are assessed by an in-house linear potential flow code
[6]. Wave resistance computations are based on the Dawson (double-model) linearization,
whereas the frictional resistance is estimated using a flat-plate approximation, based on
the local Reynolds number. Finally, the hydrodynamic loads are coupled with the rigid

Figure 1: The SWAMP autonomous surface vehicle [5]
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Figure 2: Total resistance versus the maximum of the percentage variations of εT and εθ
for the three grids and the values of ε?i

body equations of motion, that are solved for the sinkage (draught variation, ∆T ) and
trim (pitch angle variation, ∆θ), finding the equilibrium of the hydrodynamic loads acting
on the hull. Under the hypothesis of small perturbations (translations and rotations) and
neglecting the effects of the wave elevation, sinkage and trim are evaluated as follows

∆T ≈ F d
z /ρgSW , and ∆θ ≈Md

y /ρgIW (11)

where F d
z is total force along the (vertical) z-axes, ρ is the density of the water, g is the

gravitational acceleration, SW is the water plane area, Md
y is the total pitching moment,

and IW is the moment of inertia associated to the submerged part of the hull. Both Md
y

and IW are computed with respect to the geometrical center of the hull.
The steady equilibrium between the hydrodynamic loads and the rigid body equations

of motion is achieved iteratively. The equilibrium is considered achieved when

max (εT , εθ) < ε?, (12)

where εT = |∆Ti − ∆Ti−1|/∆Ti and εθ = |∆θi − ∆θi−1|/∆θi are the variations of the
sinkage and trim between two subsequent iterations. The sinkage and trim variations are
updated as follows: ∆Ti = ω∆T + (1 − ω)∆Ti−1 and ∆θi = ω∆θ + (1 − ω)∆θi−1, with
i the iteration number, ε? the user-defined threshold, and ω an under-relaxation factor
here set equal to 0.9.

3.2 Computational Set-up

The MF evaluations of the QoI are performed varying both the grid size and the
value of ε?. Three fidelity levels are used, Table 1 summarizes the size of the different
grids, the values of ε?, and the normalized computational cost βi associated with each
fidelity. Figure 2 shows the convergence of the total resistance versus the maximum of the
percentage variations of εT and εθ for the three grids and the values chosen for ε?i . The
computational domain for the free surface is defined as 1.5L upstream, 3.5L downstream,

6



S. Ficini, R. Pellegrini, A. Odetti, A. Serani, U. Iemma, M. Caccia, and M. Diez

Table 1: Grid size, convergence threshold, and computational cost for each fidelity

i-th fidelity Grid label Hull panels Free-surface panels ε?i % βi

1 G1 6.6k 16.5k 1.00 1.000
2 G2 3.2k 8.5k 5.00 0.094
3 G3 1.5k 4.1k 10.0 0.014

Figure 3: Computational domain and grid of the free surface (left) and the hull (right)
for the G3 (low-fidelity)

Figure 4: Wave elevations and pressure fields (from left to right G1, G2, and G3 solutions)

and 2.0L sideways. The computational grid G3 is shown in Fig. 3, as an example. Figure
4 shows the wave elevation and the pressure on the hull for the three grids. The wave
pattern is similar for all the grids, but the local value of the wave elevation shows some
differences. Differences in the pressure on the hulls can be noted in the front section.

4 NUMERICAL RESULTS

The MF-GP method is compared with its high-fidelity-based counterpart (HF-GP). A
fixed computational budget, equivalent to 80 high-fidelity simulations, is used. The UQ
is performed using 10,000 MC samples evaluated on the surrogate models. The expected
value, variance, skewness, and kurtosis, as well the 95th percentile, and PDF of the
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resistance are assessed. Furthermore, the relative errors with respect to a high-fidelity
benchmark are evaluated as

Ei = |Mi −Mi,β|/Mi,β, (13)

where Mi denotes the approximation of the i-th statistical moment or the 95th percentile
and Mi,β is the reference benchmark value. Finally, the KS test is performed [10].

The benchmark is built using a GP surrogate based on 160 HF simulations (two times
the budget for the UQ). The 160 HF simulations are obtained with the adaptive sampling
method based on the maximum uncertainty. The same 10,000 MC samples are used on the
benchmark to evaluate the reference values of the statistical moments and the reference
PDF for the KS test. The MATLAB Statistics and Machine Learning Toolbox [10] is used
to evaluate moments, percentile, PDF, and perform the KS test.

The solution of the maximization problem in Eqs. 3 and 8 are based on a deterministic
particle swarm optimization algorithm [11]. The adaptive sampling procedure starts with
2D + 1 training points for each fidelity level, located at the domain center and at the
center of the domain boundaries.

Figure 5: Outliers in the lowest fi-
delity training set T3

Figure 5 shows a subset of lowest fidelity training
set (T3) for a fixed displacement ∇ = 60 kg. In the
neighborhood of xG = 0 m, there are several simu-
lations affected by numerical noise (outliers) due to
an excessively loose coupling of the hydrodynamic
loads and the rigid body equations of motion. Nev-
ertheless, the use of a regressive formulation of the
GP allows to filter out the outliers.

Figure 6 shows the response surfaces of the HF
and MF GPs. The response surfaces are reported as
percentage variation of the RT with respect to the
nominal valueRT0 = 14.35 N (∇0 = 58 kg and xG =
0 m). The response surfaces are smooth and almost
equal. It is worth noting that the variation of the
uncertain parameters produces significant variations
of RT . The presence of the outliers seems not to
affect the MF-GP response surface. The low-fidelity
samples are generally uniformly distributed in the
domain, although with some clusters. Finally, the MF-GP used only 52 high-fidelity
simulations in comparison to 80 of HF-GP.

Figure 7 shows the convergence of the relative errors of the statistical moments for both
the HF and MF GPs. Both methods achieve similar results. The HF-GP achieves slightly
lower values of the error of the expected value, whereas the MF-GP achieves lower values
of the error for the variance, skewness, and kurtosis. It is worth noting that the error
of the expected value is below 0.1% for both HF and MF GPs, see Fig. 7a. Differently,
the errors for the other statistical moments are higher, especially for the skewness. The
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convergences of the MF-GP show significant oscillations (emphasized by the use of a
logarithmic scale) likely due to small variations in the hyper-parameters values of the N
GPs that compose the MF-GP.

Figure 8 shows the convergence of the 95th percentile error, KS statistics, and the
PDF for the HF and MF GPs. The PDF is better approximated by MF-GP, especially in
the interval (7, 15), see Fig. 8c. This can be seen also considering the KS test statistics,
where the MF-GP achieves better performance than HF-GP, see Fig. 8b. Furthermore,
Fig. 8a shows that MF-GP achieves slightly better results than HF-GP in evaluating the
95th percentile.

Table 2 summarizes the reference values of the statistical moments, the 95th percentile,
and the relative errors of the HF and MF GPs. Finally, it can be noted that the value
of kurtosis is smaller than 3 (the kurtosis of a normal distribution) yielding a light-tailed
PDF.

5 CONCLUSIONS AND FUTURE WORK

In this work an adaptive multi-fidelity Gaussian process (MF-GP) was presented for
forward uncertainty quantification (UQ) of an autonomous surface vehicle: the shallow
water autonomous multipurpose platform (SWAMP). The UQ was performed evaluating
the first four statistical moments, the 95th percentile, and the probability density func-
tion (PDF) of the hydrodynamic resistance (RT ) of the SWAMP, subject to two uncertain
operational parameters. The uncertain parameters were the displacement (directly con-
nected to the payload) and the position of the center of mass. The UQ was performed
with a Monte Carlo sampling of the response surface of the RT as approximated by the

(a) High-fidelity (b) Multi-fidelity

Figure 6: GP response surfaces
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(a) Expected value (b) Variance

(c) Skewness (d) Kurtosis

Figure 7: Convergence of relative errors for the statistical moments

(a) Relative error of the 95th per-
centile

(b) KS test statistic (c) PDF

Figure 8: Convergence of the 95th percentile relative error, the KS test statistics, and the
PDF

MF-GP. The RT was evaluated by a linear potential-flow solver where the hydrodynamic
loads were coupled with the rigid-body equations of motion. Three levels of fidelities were
used, defined by three grid sizes and tightness of the coupling between hydrodynamic and
rigid-body equations of motion.

The proposed MF-GP was compared with a high-fidelity trained GP (HF-GP) at fixed
computational cost. The relative errors in evaluating the statistical moments and the 95th
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Table 2: Reference values of UQ, and relative errors for the high- and multi-fidelity
approaches

Metric Reference value HF relative error% MF relative error%

Expected value 10.65 [N ] 0.001 0.027
Variance 9.596 [N2] 0.954 0.786
Skewness 0.299 [N3] 4.424 2.026
Kurtosis 2.022 [N4] 1.272 0.786
95th percentile 16.13 [N ] 0.151 0.122

percentile, and the Kolmogorov-Smirnov (KS) test were used to assess the performance
of MF- and HF-GP. The errors were computed with respect to a high-fidelity benchmark.

The MF-GP produced a response surface identical to the one of the HF-GP while
reducing by 65% the number of the high-fidelity simulations. MF-GP achieved lower
values of the relative errors than HF-GP for the variance, skewness, kurtosis, and 95th
percentile. The KS test showed that MF-GP was more accurate in reproducing the PDF,
thus demonstrating also that the MF-GP was effective in filtering out the numerical noise
in the training set.

The variation of the uncertain parameters showed significant variation of the total
resistance. Specifically, the UQ showed that it is possible to reduce RT by varying the
payload position or distribution: as an example the results show that at the nominal
speed of 1.00 m/s, with ∇ = 58 kg, it is possible to reduce by 40% the total resistance by
moving forward the center of mass of 7.5%L = 9.3cm, see Fig. 6.

Future work will focus on keeping the penalization factor (see Eq. 10) always active, to
reduce the clusterization of the training points during the adaptive sampling procedure.
Furthermore, the use of a non-constant mean value in the GP formulation will be consid-
ered to improve the noise filtering capabilities of the MF-GP. Finally, the UQ analysis will
be performed considering a larger number of uncertain parameters (e.g., including also the
advancing speed and the SWAMP width). The use of the MF-GP for higher dimensional
problem is expected to produce more benefits with respect to the single-fidelity HF-GP.
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