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Abstract

The treatment of (near-)incompressibility is a major concern for applications in-
volving rubber-like materials, or when important plastic flows occurs as in forming
processes. The use of mixed finite element methods is known to prevent the locking
of the finite element approximation in the incompressible limit. However, it also
introduces a critical condition for the stability of the formulation, called the inf-
sup or LBB condition. Recently, the finite element method has evolved with the
introduction of the partition of unity. The eXtended Finite Element Method (X-
FEM) uses the partition of unity to remove the need to mesh physical surfaces or
to remesh them as they evolve. The enrichment of the displacement field makes it
possible to treat surfaces of discontinuity inside finite elements. In this paper, some
strategies are proposed for the enrichment of mixed finite element approximations
in the incompressible setting. The case of holes, material interfaces and cracks are
considered. Numerical examples show that for well chosen enrichment strategies,
the finite element convergence rate is preserved and the inf-sup condition is passed.
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1 Introduction

Displacement based finite element methods are nowadays abundantly used in
engineer analysis. Indeed, they can solve a wide variety of problems, and have
now been deeply mathematically investigated. However there still exists two
main drawbacks for these methods. First, the treatment of incompressible or
nearly incompressible problems necessitates the use of adapted formulations. If
not, incompressibility constraint locks the approximation, leading for instance
to non-physical displacement fields. Second, the generation and especially the
update of the mesh in complex 3D settings for evolving boundaries such as
cracks, material interfaces and voids still lacks robustness, and involves im-
portant human effort.

Several techniques have been developed to respond to the locking issue. For
instance, the selective-reduced-integration procedures [1-3] or the Bbar ap-
proach of Hugues [4] in which the volumetric part of the strain tensor is evalu-
ated at the center of the element. Another way to avoid locking is to enhance
the strain tensor in order to enlarge the space on which the minimization is
performed, and meet the divergence-free condition (enhanced assumed strain
methods, see [5-9]).

Here, we will focus on two-field mixed finite element methods. The incom-
pressibility constraint is weakened by the introduction of the pressure field.
This alleviates locking at the price of additional pressure unknowns. How-
ever, mixed finite element methods are not stable in all cases, some of them
showing spurious pressure oscillations if displacement and pressure spaces are
not chosen carefully. To be stable, a mixed formulation must verify consis-
tency, ellipticity and the so called inf-sup (or LBB) condition. The later is
a severe condition which depends on the connection between the displace-
ment and pressure approximation spaces. Stable mixed formulations can be
obtained by stabilizing non-stable formulations with the use of parameters
whose values may depend on the problem at hand. Otherwise, one has to
work with approximation spaces which passe the inf-sup condition. To prove
that a displacement-pressure pair satisfies the inf-sup condition is not a trivial
task. However, a numerical test has been proposed by Brezzi and Fortin [10]
then by Chapelle et al. [11], in order to draw a prediction on the fulfilment
of the inf-sup. This test proved to be useful for the study of the stability of
various mixed elements [12].

The second drawback of classical finite element methods (evolving bound-
aries) has been overcome by the development of alternative methods such as
meshless methods in which the connectivity between the nodes is no longer
obtained by the mesh, but by domains of influence which can be split by the
boundaries. Moreover, the approximation basis can be enriched with functions
coming from the physical knowledge of the problem. Note that in the incom-
pressible limit, meshless methods are now known to lock [13,14] as classical
finite elements. Thus, some strategies have been developed to circumvent this



issue [13,15]. Apart from mixing meshless methods and finite elements [16]
another alternative to overcome the re-meshing issue in finite elements is to
use the eXtended Finite Element Method (X-FEM) based on the partition of
unity framework introduced by Babuska and Melenk [17]. Proper enrichment
of the finite element basis makes it possible to model crack, material inclusions
and holes with non-conforming meshes. The X-FEM method has been used
for the simulation of a wide variety of problems such as fracture mechanics
problems (2D[18-20], 3D[21-23], plates [24,25], cohesive zone modeling [26,27],
dynamic fracture [28], nonlinear fracture mechanics[29-31]), holes [32,33], but
also material inclusions [33,34] or multiple phase flows [35].

Here, we focus on the application of this method to mixed formulations for
the treatment of holes, material inclusions and cracks in the incompressible
limit. Bbar or selective-reduced formulations are not considered, because they
do not seem to be generalized easily to enriched displacement fields. The main
contribution of this paper is the design of enrichment strategies for the pres-
sure and displacement fields, so that it leads to a stable formulation. The
enrichment of mixed finite element approximations has already been used by
Dolbow et al. [25] and Areias et al.[31] for fracture mechanics in plates and
shells, and by Wagner et al. [36] for rigid particles in Stokes flow. However,
the stability and the convergence of these approaches was not studied. The
latest work concerning volumetric incompressibility was proposed by Dolbow
and Devan [29]. In this papers, the authors focus on the application of the
enhanced assumed strain method to X-FEM in large strain. This approach
seems to lead to a stable low order formulation in the case of nearly incom-
pressible nonlinear fracture mechanics. However, the stability of the method
was not shown, and the influence of the near-tip enrichment was not studied.
More precisely, it is not clear whether the near-tip enrichment could make this
approach unstable, as the construction of an orthogonal enhanced strain field
becomes difficult with non polynomial functions.

The paper is organized as follows: first, the governing equations of incompress-
ible linear elasticity are recalled. The conditions for the stability of mixed
formulations are also reviewed. Next, some strategies are proposed to keep
the stability of enriched finite elements. The case of holes, material interfaces
and 2D cracks are presented. Finally, in a last section the stability of these
strategies is investigated.

2 Governing Equations

In this section, we focus on the design of stable mixed formulations for the
treatment of incompressible elasticity. First, the equations governing incom-
pressible linear elasticity are recalled. Then the inf-sup condition is presented
together with a numerical test.



2.1 Incompressible Elasticity
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Fig. 1. The model problem.

We consider the static response of an elastic body which occupies a bounded
domain Q € R? with a sufficiently smooth boundary 02 which is split into two
disjointed parts: 0, where displacements are prescribed (Dirichlet bound-
ary conditions) and 0 where tractions are prescribed (Neumann boundary
conditions). The body is initially in an undeformed, unstressed state. The
governing equations are:

qo-n="T4 on 0y (1)
u(x) = ug on 90,

c=C:¢ on )

where ¢ is the cauchy stress tensor, b is the load per unit volume, uq is the
prescribed displacement field, T4 are the prescribed tractions, n is the outward
unit normal to the boundary 052, ¢ is the linearized strain tensor and C is the

fourth order elasticity tensor which must be bounded, i.e.
Cijr € L=(Q) 1,5,k 1=1,2,3 (2)

In the case of a linear isotropic elastic material, the constitutive equation can
be written as:

o= ke, (WL+2ue(w) nQ 3)
where ey is the volumetric strain (¢y(u) = divu), & is the bulk modulus,
E
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and g” is the deviatoric strain operator:
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When the material tends to incompressibility, the bulk modulus tends to in-
finity. This means that e, must tend to zero in order to meet condition (2)
(the displacement field must be divergence free in the incompressible limit).

ey =div(u) — Oasv — 0.5 (6)

The strong form (1) is equivalent to the stationarity of a displacement potential
II:
1
Hu:—/eu:CzaudQ—/u-bdQ— u-Tqdl 7
(w) =3 [ =w:C:can- [ [ weTadr ()
In order to model incompressible or almost incompressible problems, a two
field principle is considered by introducing a second variable (the hydrostatic
pressure p) in the potential (7):

p=—nev(u) = —<Tr(g) )

When & increases, the volumetric strain €y decreases and becomes very small.
For total incompressibility, the bulk modulus is infinite, the volumetric strain
is zero, and the pressure remains finite (of the order of the applied boundary
tractions). The stress tensor is then expressed as:

c=-pl+2ucg” inQ (9)

The solution of the governing differential equations (1) now involves two vari-
ables: the displacement field and the pressure field. Writing the two fields
variational principle, the total potential for the u — p formulation is expressed
as:
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Invoking the stationarity of x(u, p) with respect to the two independent vari-
ables u and p, we obtain:

/Q(SQD:

e

e dO — /Qpagv Q) = R(5v) (11)
—/Q (%Jrev) SpdQ =0 (12)

where R(0v) represents the virtual work of the external loads. In the case of



Fig. 2. The model problem with material interfaces.

two perfectly bounded materials, each phase of the body must satisfy (1) in
addition to continuity conditions:

[u] =0 on 09y (13)
[g] -ny =0 on 0, (14)

where the jump operator [-] is defined along the interface, 95, as [v] =
vi — va. Remark that (14) does not implies that the pressure, nor the strain
field, are continuous across the interface.

2.2  Stability of mized formulations

2.2.1 Analytical condition for stability - the inf-sup condition

The discretization of equation (11) leads to a finite element system in the form
(see section 3):

Kun Kup | (u) _(f (15)
KUPT %KPP p 0

In order to be regular in the full range of &, the kernel of the K., matrix
must be zero (as well of course as appropriate removal of the rigid modes)
More precisely, the displacement and pressure interpolations must satisfy the
Ladyzhenskaya - Babuska - Brezzi compatibility condition [10], also known
as the LBB (or inf-sup) condition. This condition states that the displace-
ment and pressure spaces cannot be chosen separately. To ensure solvability,
a necessary but not sufficient condition for the uniqueness of u and p is that:

dim Q" < dim V" (16)

where Q" and V" are respectively the pressure and displacement finite element
spaces. The sufficient condition linking these spaces (inf-sup or LBB condition)



expresses as:
The existence of a stable finite element approzimate solution (u”,p") depends
on choosing a pair of spaces V' and Q" such that the following condition holds:

" div v dQ
inf sup Jo qh al Vh >0>0 (17)
are@yreyn || VL]l ¢" [lo

where || - ||; and || - ||o indicates H' and L? norms respectively and (3 is inde-
pendent of the mesh size h. If the inf-sup compatibility condition is satisfied,
then there exists a unique u" € V" and a p" € Q" (determined up to an
arbitrary constant in the case of purely Dirichlet boundary conditions).

2.2.2  Numerical assessment of the inf-sup condition

As seen before, the prediction of the stability of a mixed formulation involves
the fulfillment of the inf-sup criterion. This criterion is however impossible
to prove for practical situations. This is why the numerical evaluation of the
inf-sup condition has received considerable attention [11,10]. This numerical
evaluation, although not equivalent to the analytical inf-sup, gives indications
on whether (17) is fulfilled or not for a given set of finite element discretiza-
tions. The numerical inf-sup test is based on the following theorem.

Proposition 1 Let My, and My, be the mass matrices associated to the
scalar products of V" and Q" respectively and let jin;, be the smallest non
zero eigenvalue defined by the following eigenproblem:

KupT ]-\/-[uui1 Kup q - /’L2 Mpp q (18>
then the value of 3 is stmply pmin-

The proof can be found in [37] or [10]. The numerical test proposed in [11]
consists in testing a particular formulation by calculating  using meshes of
increasing refinement. On the basis of three or four results it can be predicted
whether the inf-sup value is probably bounded from underneath or, on the
contrary, goes down to zero when the mesh is refined. The reliability of this test
is demonstrated on several examples of elements for incompressible elasticity
problems in [11]. In the following section this test is used to check the behavior
of proposed enrichment strategies. However, we follow [11] and use only Sy, =
JoNu : Yu d instead of My, in (18). In order to perform the numerical inf-
sup test, a sequence of successive refined meshes is considered. The objective
is to monitor the inf-sup values, 3 , when h decreases. If a steady decrease in
log(/3) is observed when h goes to zero, the element is predicted to violate the
inf-sup condition and said to fail the numerical test. But, if the log(3) value
is stable as the number of elements increases, the test is numerically passed.



3 X-FEM Discretization
3.1 Displacement field

With classical finite elements, the approximation of a vector field u on an
element 2. is written as:

u()la, = Z u* N(x) (19)

where n, is the number of coefficients describing the approximation of the
displacement over the element, u® is the a'" coefficient of this approximation
and N¢ is the vectorial shape function associated to the coefficient u®. Within
the partition of unity, the approximation is enriched as:

u(x)la, = z N (u n ; " d)%(X)) (20)

where n.,, is the number of enrichment modes, aj is the additional dof as-
sociated to dof a and ¢j stands for the Bt scalar enrichment function. The
number and the expression of the enrichment functions vary with the problem
to model. The expression of this enrichment function will be recalled for holes,
inclusions and fracture mechanics in the next sections.

3.2 Pressure field

Using the same scheme, the pressure approximation is written as:

o = 3 N (p° + a® ¢ (x)) (21)

a=1

p(x)

where n,, is the number of coefficients describing the approximation over the
element, p® is the at" coefficient of this approximation and N, is the scalar
shape function associated to the coefficient p®, a® is the additional dof asso-
ciated to dof a and ¢P stands for the scalar pressure enrichment function.
The key issue is the combined choice of enrichment functions ¢" and ¢ such
that the whole enriched approximation (displacement and pressure) passes the
inf-sup condition.
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Fig. 3. The Mini element (left) and T6T3 element (right).
3.3 Stable mized finite elements

In this work, we shall enrich two stable mixed finite elements: the Mini element
(see Figure 3) introduced by Arnold, Brezzi and Fortin [38] considering linear
displacement field plus a bubble function and linear pressure field (P;", P;
element). Second, the T67'3 (P, P; element) (see Figure 3) which is a robust
and classical mixed element.

4 Stability of mixed formulations enriched with X-FEM

4.1 The case of Holes

The strategy for treating holes within the X-FEM consists in an integration of
the weak form only in the non-void parts of the elements (See [32,33]). More-
over, the nodes for which the support is completely in the void are eliminated.
In the incompressible setting, it is natural to follow the same strategy. No
enrichment will be used, and the weak form will be integrated in the body
only.

The stability of this strategy is evaluated by considering convergence studies
under total incompressibility, and numerical evaluation of the inf-sup. The
strategy will be considered as stable if the finite element convergence rate is
shown to be preserved, and if the numerical inf-sup test is passed.

4.1.1 Convergence study

Consider an infinite plate with a traction-free circular hole under uniaxial
tension. The exact solution of this problem is given in [33]. We consider a
square domain of edge length 2 with a circular hole of radius a = 0.4 at
its center. The exact tractions are imposed on the boundaries of the domain
and rigid body modes are prevented. The Poisson’s ratio is set to 0.5 (total
incompressibility), and the Young’s modulus to 1.0. In addition, plane strain
conditions are assumed. The sequence of meshes that we consider for the
convergence study are unstructured and do not match the hole boundary. The



displacement error is measured using the energy norm error defined Eq. (22),
and the error on the pressure is computed using the L? norm (23).

1/2
(fg(g(uh) _ g(u)) : g : (g(uh) _ g(u)) dQ)
Eu: = - (22)
(fn g(w): C: g(u) dQ)
b 9 1/2
. (Ja(r" —p)?dQ) (23)

(Jop?d®)"
The convergence study is performed using both Mini and T6T3 elements, and
the results are presented in Figure 4 for both pressure and displacement. As
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Fig. 4. Convergence study, incompressible plate with a hole. Left: Mini, right: T6T3.

seen on Figure 4, the convergence rate of both displacement and pressure are
similar to the theoretical one. This demonstrates that the X-FEM strategy for

the treatment of holes preserves the convergence properties of Mini and T6T3
elements.

4.1.2  Numerical Inf-sup test

Convergence study was a first step to assess the behavior of the X-FEM strat-
egy for holes. The evaluation of the fulfillment of the inf-sup condition is an-
other approach for the validation. We follow the work of Chapelle and Bathe
[11] described in section 2.2.2, and consider the problem presented in Fig-
ure 5(a). It is composed of a square of length 2, with a hole of radius 0.4
at its center. The square has its bottom and left edges blocked, and a pres-
sure is applied on the upper edge. The inf-sup value is approximated using
gradually refined structured triangular meshes. Mini and T6T3 formulations
are considered herein. The evolution of the numerical inf-sup value is plotted
in figure 5(b) with respect to the element size. As seen on this figure, the
numerical inf-sup value is stable for Mini and T6T3 formulations.
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Fig. 5. Inf-sup evaluation for holes: (a) model problem, (b) Evolution of the numer-
ical inf-sup.

4.2 Material inclusions

The treatment of material inclusion in a compressible media has been treated
in various contributions (see for example [33,34]). In this paper, we focus on the
enrichment strategy proposed by Moés et al. in [34] because this enrichment
function preserves the finite element convergence rate (observed numerically),
this "ridge” function is expressed as:

Z €7 N (x) — (x) (24)

where &; is the signed-distance function to the interface evaluated at the vertex
of node i (see Figure 6 for the example of a plate with a circular inclusion).
Two types of enrichment are considered for the pressure:

e A discontinuous enrichment (Heaviside)
e A ridge function enrichment (by analogy with the strategy of enrichment of
the displacement field)

The stability of these enriched elements are compared to the stability of the
initial ones. The finite element computation of incompressible two phase media
will be handled considering Mini and T6T3 elements. The X-FEM strategies
considered are presented in Table 1.

The comparison of the strategies presented in Table 1 is performed as in the
previous section: first, some convergence studies are carried out. Second, some
numerical evaluation of the inf-sup value in order to complete the conclusions
of the convergence studies.

11



Fig. 6. Ridge function for a square plate with a circular inclusion.

Displacement Pressure Formulation N° Convergence rate Inf-sup test

(Disp/Pressure)
FEM-T6T3
Py P 1 ~ 1.5%/1.5 PASS
FEM-Mini
P P 2 ~1/1 PASS
X-FEM - Mini
PfeoPf+«R Pi@&P +R 3 ~1/1 PASS
Pf&oPi*xR P &P xR 4 ~1/1 PASS
PFroPf+«R PioP +H 5 ~1/— FAIL
Pf&oP xR P &P +H 6 ~1/— FAIL
X-FEM - T6T3
PP&P,xR PdPi*R 7 ~ 1.5%/1.5 PASS
P&dPixR PidPi+R 8 ~ 1.5%/1.5 PASS
P®&P,xR P &P +xH 9 ~1.5%/— FAIL
P&oPixR PioPixH 10 ~ 1.5%/— FAIL
a Non isoparametric elements
Table 1

Approximation spaces (R: ridge enrichment, H: Heaviside enrichment).

4.2.1 Convergence studies
Consider the example presented in Figure 7. It is composed of two perfectly

bounded incompressible materials with shear modulus p; and p5. The first ma-
terial is held fixed at radius » = a and the interface between the two materials

12



is located at radius r = b. The structure is subjected to body forces b; and
bs in €2 and 2, respectively, and tractions are enforced at radius » = ¢. The

Fig. 7. Shear based example.

analytical pressure is depicted in Figure 8, and detailed in appendix A. The

//

Pressure (MPa)
»

o4 06 os 2 4 6 8
Radius

Fig. 8. Analytical pressure.

results of the convergence study are presented in Figure 9. The energy norm
error on the displacement exhibits a rate of convergence in O(h) independently
of the enrichment strategy. This means that concerning the displacement, the
theoretical rate of convergence is preserved with all the strategies. Now, con-
sider the convergence of the pressure field which is a strong indicator on the
performance of a mixed formulation. Figure 9 shows that formulations 2 and 3
give the theoretical convergence rates. Concerning formulation 5, the conver-
gence rate is degraded when the mesh is refined. In fact, this comes from very
localized spurious pressure modes which degrades the error. This phenomenon
is caused by the diminution of the so called ”constraint ratio” v between the
number of displacement dofs n, and the number of pressure dofs n, when the
interface comes near the element edges. This is illustrated in Figure 10 where
v passes from 6.0 to 4.0 if the pressure is enriched with the Heaviside function.
On the contrary, in the case of the ridge enrichment, the ratio remains stable
(see Figure 11).

In Figure 12, the case where only the linear part of the approximation space
is enriched is considered. As seen on this figure, the rate of convergence is

13
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Fig. 9. Rate of convergence for the problem Fig.7.

@ disp dof [C] press dof
@ enriched disp dof [l enriched press dof

[o—fel—e]

Fig. 10. Tlustration of the drop in the constraint ration (v) with the Heaviside
enrichment when the mesh matches the interface (right) or not (left).

@ disp dof [C] press dof
@ enriched disp dof [l enriched press dof
o

Fig. 11. Tllustration of the stability of the constraint ration (y) with the Ridge
enrichment when the mesh matches the interface (right) or not (left).

degraded for the Heaviside-based enrichment when the mesh is refined. How-
ever, with ridge-based enrichment, it remains similar to the optimal conver-
gence rate for both pressure and displacement. Finally, the case of quadratic
T6T3 based elements is considered in Figure 13: the rate of convergence is in
O(h3/?) for the pressure and slightly slower for the displacement (even with

14
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Fig. 12. Rate of convergence for the problem Fig.7, linear part enriched (Mini based
element).

meshed domains), although it should be in O(h?) for both of them. We believe
that it comes from the fact that the elements used here are not isoparamet-
ric elements (straight edge triangles). Thus, the error in the representation of
curved domains degrades the rate of convergence to O(h*/2). The conclusions
remain similar when only the linear part of the displacement is enriched (see
figure 14). As seen in these first numerical examples, the enrichment of both

1
6o Po®P,*R, P® P, H (Press)
8 P®&P,+R, P,®P, «H (Disp)

o P,d P+ R, P,® P, * R (Press) /'nul-_,
aA PaPxR, P,® P+ R (Disp) !/
0} «« P, P, (Press) i

v—v P P, (Disp) i
5 = ‘
5 001 ,,Eg"' ] Z%p'”"
8 : -

= / >
- ,
0,001 v = | ¥
0.0003 61 0.1 1

log(h)

Fig. 13. Rate of convergence for the problem Fig.7, quadratic interpolation.

pressure and displacement with the ridge function gives the theoretical con-
vergence rates for the Mini element. However, the example proposed here does
not allow the full study of T6T3 based elements (even the displacement-based
P, element converge in O(h%/?) in the compressible case). Finally, we have seen
that not enriching the bubble function gives similar results with lesser degrees
of freedom. As a conclusion, it seems that the Mini element enriched with
the ridge gives good results for total incompressibility (and thus for almost
incompressible materials).

15
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Fig. 14. Rate of convergence for the problem Fig.7, linear part enriched (T6T3 based
element).

4.2.2  Convergence studies (straight interface)

In order to evaluate the formulations based on T6T3 elements, we have built
another numerical example composed of a square of length 2 (see Figure 15)
which is composed of two materials 1 and 2 of shear modulus respectively pq
and po (the case of total incompressibility is considered). The body is subjected
to surface tractions T on its boundary, and body forces respectively b; and
b, in 1 and 2. The stress, strain and pressure fields are given in appendix B,
none of them being in the finite element approximation space. Finally, we set
iy = 1/3 and py = 10/3. A convergence study is performed, and the results

T

VIVAAAA LA o

Fig. 15. Bimaterial problem with straight interface.

are given in Figure 16. We can see that T6T3 and Mini based strategies have
the same rate of convergence than finite elements (O(h) for the Mini and
O(h?) for the T6T3). This shows that ridge-based enrichment seems to have a
stable behaviour in the incompressible limit, and that the O(h%/?) convergence
rate for T6T3 elements in the last example was caused by non-isoparametric
elements.

16
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Fig. 16. Convergence study, straight interface: left FEM, right X-FEM.
4.2.3  Numerical Inf-sup test

To study the fulfilment of the inf-sup condition, we consider the problem pre-
sented in Figure 17, which has been adapted from [11]. It is composed of a
square with two different materials subjected to a bending-type solicitation.
The inf-sup value is approximated using gradually refined triangular meshes.
In this first example, the interface is located at the center of the square.

Wb

1 H2

Fig. 17. Problem for the numerical evaluation of the inf-sup.

The sequence of meshes considered here are designed so that the interface
passes through the elements (impair number of elements per face). Each face
of the square is discretized from 1 to 33 elements (2178 triangular elements on
the square). The results are presented in Figure 18 for several approximation
spaces. As expected, the Mini element (P;"* P;) for u; = po (one material)
passes the numerical inf-sup evaluation, as the lower eigenvalue of the system
(18) remains bounded away from zero. On the contrary, the P; P; element
(which is not LBB compliant) fails this test. The Pit ® P;" * R, Py @ Py« H
and P{* @ P{" x R, P; @® P; * R spaces seem to pass the numerical inf-sup test.
However, the kind of mesh considered here does not exhibit the case of figure
presented in Fig. 10. This is why another example is considered in Figure 19.
It represents a square composed of two different materials subjected to a con-
stant pressure on its top face. The interface between the two materials is no
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Fig. 18. Evaluation of the inf-sup.

longer at the center of the left side. Its position is parametrized by the param-
eter § (see Fig. 19). First, ¢ is set to zero, and the inf-sup is evaluated. As seen

! Ha

Fig. 19. Second problem for the numerical evaluation of the inf-sup.

in Figure 20, the results are comparable to those obtained in Fig. 18. Then,
is set to 0.1 and the mesh is refined to check whether the inf-sup condition is
fulfilled. As the interface is unsymmetrical, the phenomenon depicted Fig. 10
will occur at some steps of the discretization. The influence of the position of
the interface is clearly shown in figure 21. For Ridge-based enrichment (formu-
lations 3 and 7), no degradation on the inf-sup is observed, the value is stable
during refinement. Concerning the Heaviside-based enrichment (formulations
5 and 9), the value of the inf-sup degrades strongly when the element’s edges
approach the discontinuity (for 1/N — 0.1 or 1/N — 0.033333). This means
that those elements do not pass the inf-sup condition!, as the numerical inf-
sup test fails for this situation. Similar results are obtained where only the
linear part of the approximation space is enriched (see Figure 22).

1 Tt is not clear whether the inf-sup parameter does indeed tend to zero as the mesh
is refined, but the unstable behaviour of this parameter as well as the non-monotonic
convergence leads us to avoid the Heaviside enrichment.
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4.2.4 Conclusion for material interfaces

The results presented in this section are summarized in Table 1. Strategies
involving the enrichment of both displacement and pressure with the ridge
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function are the most effective since they pass the inf-sup test. On the contrary,
Heaviside based strategies do not pass this test and should not be considered.
The formulations where only the linear part of the displacement is enriched
(N4 and 8) with the ridge are interesting, since less degrees of freedom are
involved in the approximation. This should be important in the context of an
extension to three dimensional studies.

4.8 Incompressible fracture mechanics

The resolution of compressible fracture mechanics problems has been exten-
sively studied in the context of the X-FEM for both 2D [39,18,40,32,24] and
3D fracture mechanics [21,22]. The most common enrichment strategy consists
in using the asymptotic displacement field as an enrichment for the displace-
ment finite element approximation. In the context of incompressible media,
the analytical asymptotic displacement field (Westergaard solution) is shown
to be identical to the limit of the compressible one. The asymptotic evolution
of the pressure field can be obtained also using the Westergaard solution.

(r0) = 2B o (0 4 2B g (1 (25)
r,0) = ——— = ———sin | =
b 3V2nmr 2 3V2rmr 2

b — {\/?sin (g) J/rcos (g) J/rsin (g) sin(9),

s (D) i) -

We use these expressions as an enrichment for the pressure field in the near-tip
region. Thus, the enrichment basis for the pressure is expressed as:

o = oo (1)
(0
fr = Jrsin (5)
Note that a classical Heaviside enrichment is considered for both pressure and
displacement for nodes whose support is fully cut by the crack, and that only
the Mini element is considered hereunder.

(27)

4.8.1 Convergence study

Consider a domain Q = [—1,1] x [—1,1] under tension (see Figure 23). The
tensions applied on the boundary of the domain are related to the exact ten-
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sions in an infinite cracked body under mixed mode (using the Westesgaard
solution with K; = 1.0, K;; = 1.0). A sequence of gradually refined meshes is
considered. Those meshes are built so that the crack passes always through the
elements. Two types of meshes are considered: the first one is presented in Fig-
ure 23 where the crack tip is located on an element’s edge, and the second one
(see Figure 23) where it finishes inside an element. Two enrichment strategies
are also considered for the near-tip region: first, the topological enrichment
where only the nodes whose support contains the crack are enriched, and the
so-called ’geometrical’ enrichment introduced by Bechet et al. [41] where all
the nodes which lie in a circle (of radius 0.1 here) are enriched with crack tip
fields. The authors have shown that the convergence rate was improving from
O(h'/?) to O(h) with the use of this enrichment (for a given benchmark). The

Tems Tem

/ST ST
/| /|
/] ( / /
/| ] /| /
p V Y, /
I’ /TmT/ /Te-a
/] //' =/

/] /] /
5 V / V
) /|

/,////T S VeV ,T/////

Fig. 23. Domain of interest, mesh N °1 (left), mesh N2 (center), deformed shape
(right).

convergence study are presented in Figure 24 for the first mesh, and Figure 25
for the second. As seen in Figure 24, the convergence rate for both displace-
ment and pressure are in O(h'/?) for the topological enrichment, as expected.
The influence of the enrichment is clearly drawn, as it shifts downward the
displacement and pressure error curves. For a geometrical enrichment, we ob-
tain results similar to [41], i.e. an improvement of the convergence rate up to
O(h) for both pressure and displacement. In this particular case, we obtain a
slightly better convergence rate for the pressure. The conclusions are similar
for the second mesh.

Note that the case where only the displacement field is enriched has been
considered and has shown that the influence of the pressure enrichment is
small when dealing with topological enrichment (changes of the initial value
of the curve), whereas it is huge when dealing with the geometrical enrich-
ment (degradation of both initial value and convergence rate). This is why, the
geometrical enrichment of both pressure and displacement field is the more
effective way to model incompressible fracture mechanics. Finally, the case
where the enrichment is applied only on the linear part of the approximation
is considered in Figure 26. The rate of convergence is shown to be preserved,
while degrees of freedom are saved.
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Fig. 25. Convergence rate, structured mesh N ° 2.

4.3.2  Numerical Inf-sup test

The evaluation of the inf-sup condition is performed by considering a single
edge notched plate of side length 2.0. A pressure is applied on the upper face,
bottom and left faces are held fixed. This loading case is much more drastic
for the inf-sup test than the one depicted in Fig. 23. The crack tip is located at
(0.1,0.05), so that its relative position to the mesh will change during refine-
ment (see Figure 27). The evolution of the smallest eigenvalue of the inf-sup
problem is plotted in Figure 28 for 5 cases of figure: topological enrichment,
geometrical enrichment (radius 0.4), classical FEM, topological enrichment
(linear part enriched), geometrical enrichment (linear part enriched). The evo-
lution of the eigenvalue tends to a finite value for all curves, showing that the
inf-sup condition seems to be fulfilled for both of them.
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4.3.3 Conclusion for fracture mechanics

As a conclusion, we have seen that the enrichment of both displacement and
pressure fields with their asymptotic expressions leads to a stable mixed formu-
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lation. Moreover, the use of the geometrical enrichment leads to an improved
convergence case, similar to the compressible rate. Finally, degrees of freedom
can be saved by only enriching the linear part of the approximation.

5 Conclusion

Some strategies for enriching existing mixed finite element methods have been
presented. These strategies are natural extensions of the displacement-based
X-FEM, and are shown to preserve the classical finite element convergence
rate. The stability of these strategies has been shown through the numeri-
cal inf-sup test. However, quadratic-based elements could not be tested com-
pletely, as in some cases the linear interpolation of the level-set leads to a
degraded rate of convergence. The construction and the validation of isopara-
metric quadratic elements will be the subject of a forthcoming paper. The
method should also be applied to finite strain mechanics, as the fulfilment of
the inf-sup condition seems to be a prerequisite to build efficient large strain
formulations [42].
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A Analytical solution for curved interface

We did construct a specific analytical solution to investigate the convergence
of the X-FEM. It represents two perfectly bounded rings made from different
materials (see figure 7). The loading is chosen such that:

blT(T):3W3CQ + 2W2€+W1 (Al)
bor (1) =3V3c® + 2Vac+ V) (A.2)
T,=Wsc®*+ Wy +Wlc+ W, (A.3)
262
Tg:—QM (—a2 p +a? po it — g b* A+ a? b2,u1) (A.4)

C

Under these boundary conditions, the stress field components are:

0'71,7, = — (W37“3 + W2T2 + Wir + WO) ( 5)
O—;H - 01}1" ( )
—24u1 1 ¢ ab°
1 _ A7
Oro (—a?pc® 4+ a?pusc® — pb®c® 4+ a?b?uy) r2 (A7)
o2 =— (V37"3 + Vor® + Vir + Vo) (A.8)
0-39 - U?’r (A9>
—24 p1g c a*b’
2
= A.10
Tro (—a?pc? 4 a?pugc® — ub?c® 4+ a?b?uy) r2 ( )
The displacement field components are:
| cb?ps(r? — a?)
=— A1l
() (—ap1c? + a?uac® — pab?c® + a?b?py)r ( )
ul(r)=0 (A.12)
W2(r) = —c —r?a?py + r2a’py + ripsb® — a®by (A.13)
o (—a2p1c® + a?uac® — pab?c? + a?b?py)r '
u?(r) =0 (A.14)
And the pressure evolution is:
pl(’f‘) :W3T3+WQT2+W1T+WO (A15>
p(r) = Var’ + Vor’ + Vir + V4 (A.16)
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Moreover, in the example section 4.2.1, we have considered:

m=1/3 py=10/3

a=04 b=1.0 c¢=20
Ws=—10.0 W, =200 W;=-50 Wy=—10.0
V=00 V,=-100 V; =50 Vo=00

B Analytical solution for a straight interface

The problem (see figure 15) is built so that the interface between the two
materials is straight. The loading is chosen such that:

1o =0pi1 2 (B.1)
biy=—6pmy —2pus + 3y (B.2)
oo =~ 2 iz (B.3)
bay =24 pioy — 2 piy + 69/ (B.4)
Tl =0 (B.5)
Tyy=—6py—2pus+3y* (B.6)
Toy =242y — 2 pto + 6y (B.5)
Under these boundary conditions, the stress field components are:
— 2 _ 2py) _ .3 . 22
o = 2M1( 3y o ) Yy /h( (6y+ M12)a:+2) (B9)
=] .
p (= 6y +2p2/p1) z+2) 2 (3y2_|_25_12y)_y3
2y (1297 = 29) = 29°  poz (= (~2y+2) 0+ 20
o, = o (1292 = 2y) — 297 i (— (—24y+2) ) (B.10)

po (= (=24y+2) w4+ 28) 24, (—129% +2y) — 29°
The displacement field is:
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Uiy = — 3y2+2&y r+2y—1
H1
uly:y3+&y2—1
H1

U2I:(12y2—2y) x+2%y—1

u2y:—4y3+y2—1

And the pressure evolution is:

P1 :y3

P2 = 2y3

(B.11)
(B.12)

(B.13)
(B.14)

(B.15)
(B.16)

Fig. B.1. Bimaterial problem with straight interface: displacement (left: u., right:

Uy).

Fig. B.2. Bimaterial problem with straight interface:

30

body forces (left: b, right: by).



Fig. B.3. Bimaterial problem with straight interface: pressure field.
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