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Abstract

The treatment of (near-)incompressibility is a major concern for applications in-
volving rubber-like materials, or when important plastic flows occurs as in forming
processes. The use of mixed finite element methods is known to prevent the locking
of the finite element approximation in the incompressible limit. However, it also
introduces a critical condition for the stability of the formulation, called the inf-
sup or LBB condition. Recently, the finite element method has evolved with the
introduction of the partition of unity. The eXtended Finite Element Method (X-
FEM) uses the partition of unity to remove the need to mesh physical surfaces or
to remesh them as they evolve. The enrichment of the displacement field makes it
possible to treat surfaces of discontinuity inside finite elements. In this paper, some
strategies are proposed for the enrichment of mixed finite element approximations
in the incompressible setting. The case of holes, material interfaces and cracks are
considered. Numerical examples show that for well chosen enrichment strategies,
the finite element convergence rate is preserved and the inf-sup condition is passed.
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1 Introduction

Displacement based finite element methods are nowadays abundantly used in
engineer analysis. Indeed, they can solve a wide variety of problems, and have
now been deeply mathematically investigated. However there still exists two
main drawbacks for these methods. First, the treatment of incompressible or
nearly incompressible problems necessitates the use of adapted formulations. If
not, incompressibility constraint locks the approximation, leading for instance
to non-physical displacement fields. Second, the generation and especially the
update of the mesh in complex 3D settings for evolving boundaries such as
cracks, material interfaces and voids still lacks robustness, and involves im-
portant human effort.
Several techniques have been developed to respond to the locking issue. For
instance, the selective-reduced-integration procedures [1–3] or the Bbar ap-
proach of Hugues [4] in which the volumetric part of the strain tensor is evalu-
ated at the center of the element. Another way to avoid locking is to enhance
the strain tensor in order to enlarge the space on which the minimization is
performed, and meet the divergence-free condition (enhanced assumed strain
methods, see [5–9]).
Here, we will focus on two-field mixed finite element methods. The incom-
pressibility constraint is weakened by the introduction of the pressure field.
This alleviates locking at the price of additional pressure unknowns. How-
ever, mixed finite element methods are not stable in all cases, some of them
showing spurious pressure oscillations if displacement and pressure spaces are
not chosen carefully. To be stable, a mixed formulation must verify consis-
tency, ellipticity and the so called inf-sup (or LBB) condition. The later is
a severe condition which depends on the connection between the displace-
ment and pressure approximation spaces. Stable mixed formulations can be
obtained by stabilizing non-stable formulations with the use of parameters
whose values may depend on the problem at hand. Otherwise, one has to
work with approximation spaces which passe the inf-sup condition. To prove
that a displacement-pressure pair satisfies the inf-sup condition is not a trivial
task. However, a numerical test has been proposed by Brezzi and Fortin [10]
then by Chapelle et al. [11], in order to draw a prediction on the fulfilment
of the inf-sup. This test proved to be useful for the study of the stability of
various mixed elements [12].
The second drawback of classical finite element methods (evolving bound-
aries) has been overcome by the development of alternative methods such as
meshless methods in which the connectivity between the nodes is no longer
obtained by the mesh, but by domains of influence which can be split by the
boundaries. Moreover, the approximation basis can be enriched with functions
coming from the physical knowledge of the problem. Note that in the incom-
pressible limit, meshless methods are now known to lock [13,14] as classical
finite elements. Thus, some strategies have been developed to circumvent this
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issue [13,15]. Apart from mixing meshless methods and finite elements [16]
another alternative to overcome the re-meshing issue in finite elements is to
use the eXtended Finite Element Method (X-FEM) based on the partition of
unity framework introduced by Babuška and Melenk [17]. Proper enrichment
of the finite element basis makes it possible to model crack, material inclusions
and holes with non-conforming meshes. The X-FEM method has been used
for the simulation of a wide variety of problems such as fracture mechanics
problems (2D[18–20], 3D[21–23], plates [24,25], cohesive zone modeling [26,27],
dynamic fracture [28], nonlinear fracture mechanics[29–31]), holes [32,33], but
also material inclusions [33,34] or multiple phase flows [35].
Here, we focus on the application of this method to mixed formulations for
the treatment of holes, material inclusions and cracks in the incompressible
limit. Bbar or selective-reduced formulations are not considered, because they
do not seem to be generalized easily to enriched displacement fields. The main
contribution of this paper is the design of enrichment strategies for the pres-
sure and displacement fields, so that it leads to a stable formulation. The
enrichment of mixed finite element approximations has already been used by
Dolbow et al. [25] and Areias et al.[31] for fracture mechanics in plates and
shells, and by Wagner et al. [36] for rigid particles in Stokes flow. However,
the stability and the convergence of these approaches was not studied. The
latest work concerning volumetric incompressibility was proposed by Dolbow
and Devan [29]. In this papers, the authors focus on the application of the
enhanced assumed strain method to X-FEM in large strain. This approach
seems to lead to a stable low order formulation in the case of nearly incom-
pressible nonlinear fracture mechanics. However, the stability of the method
was not shown, and the influence of the near-tip enrichment was not studied.
More precisely, it is not clear whether the near-tip enrichment could make this
approach unstable, as the construction of an orthogonal enhanced strain field
becomes difficult with non polynomial functions.
The paper is organized as follows: first, the governing equations of incompress-
ible linear elasticity are recalled. The conditions for the stability of mixed
formulations are also reviewed. Next, some strategies are proposed to keep
the stability of enriched finite elements. The case of holes, material interfaces
and 2D cracks are presented. Finally, in a last section the stability of these
strategies is investigated.

2 Governing Equations

In this section, we focus on the design of stable mixed formulations for the
treatment of incompressible elasticity. First, the equations governing incom-
pressible linear elasticity are recalled. Then the inf-sup condition is presented
together with a numerical test.
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and εD is the deviatoric strain operator:

εD = ε − εV

3
I (5)

When the material tends to incompressibility, the bulk modulus tends to in-
finity. This means that εV must tend to zero in order to meet condition (2)
(the displacement field must be divergence free in the incompressible limit).

εV = div(u) −→ 0 as ν → 0.5 (6)

The strong form (1) is equivalent to the stationarity of a displacement potential
Π:

Π(u) =
1

2

∫

Ω
ε(u) : C : ε(u) dΩ −

∫

Ω
u · b dΩ −

∫

∂Ωt

u · Td dΓ (7)

In order to model incompressible or almost incompressible problems, a two
field principle is considered by introducing a second variable (the hydrostatic
pressure p) in the potential (7):

p = −κεV (u) = −1

3
Tr(σ) (8)

When κ increases, the volumetric strain εV decreases and becomes very small.
For total incompressibility, the bulk modulus is infinite, the volumetric strain
is zero, and the pressure remains finite (of the order of the applied boundary
tractions). The stress tensor is then expressed as:

σ = −p I + 2µ εD in Ω (9)

The solution of the governing differential equations (1) now involves two vari-
ables: the displacement field and the pressure field. Writing the two fields
variational principle, the total potential for the u− p formulation is expressed
as:

χ(u, p) =
1

2

∫

Ω
εD(u) : C : εD(u) dΩ −

∫

Ω
u · b dΩ −

∫

∂Ωt

u · Td dΓ (10)

−1

2

∫

Ω

p2

κ
dΩ −

∫

Ω
p εV (u) dΩ

Invoking the stationarity of χ(u, p) with respect to the two independent vari-
ables u and p, we obtain:

∫

Ω
δεD : C : εD dΩ −

∫

Ω
p δεV dΩ = R(δv) (11)

−
∫

Ω

(

p

κ
+ εV

)

δp dΩ = 0 (12)

where R(δv) represents the virtual work of the external loads. In the case of
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expresses as:
The existence of a stable finite element approximate solution (uh, ph) depends
on choosing a pair of spaces Vh and Qh such that the following condition holds:

inf
qh∈Qh

sup
vh∈Vh

∫

Ω qh div vh dΩ

‖ vh ‖1 ‖ qh ‖0

> β > 0 (17)

where ‖ · ‖1 and ‖ · ‖0 indicates H1 and L2 norms respectively and β is inde-
pendent of the mesh size h. If the inf-sup compatibility condition is satisfied,
then there exists a unique uh ∈ Vh and a ph ∈ Qh (determined up to an
arbitrary constant in the case of purely Dirichlet boundary conditions).

2.2.2 Numerical assessment of the inf-sup condition

As seen before, the prediction of the stability of a mixed formulation involves
the fulfillment of the inf-sup criterion. This criterion is however impossible
to prove for practical situations. This is why the numerical evaluation of the
inf-sup condition has received considerable attention [11,10]. This numerical
evaluation, although not equivalent to the analytical inf-sup, gives indications
on whether (17) is fulfilled or not for a given set of finite element discretiza-
tions. The numerical inf-sup test is based on the following theorem.

Proposition 1 Let Muu and Mpp be the mass matrices associated to the
scalar products of Vh and Qh respectively and let µmin be the smallest non
zero eigenvalue defined by the following eigenproblem:

Kup
T Muu

−1 Kup q = µ2 Mpp q (18)

then the value of β is simply µmin.

The proof can be found in [37] or [10]. The numerical test proposed in [11]
consists in testing a particular formulation by calculating β using meshes of
increasing refinement. On the basis of three or four results it can be predicted
whether the inf-sup value is probably bounded from underneath or, on the
contrary, goes down to zero when the mesh is refined. The reliability of this test
is demonstrated on several examples of elements for incompressible elasticity
problems in [11]. In the following section this test is used to check the behavior
of proposed enrichment strategies. However, we follow [11] and use only Suu =
∫

Ω ∇u : ∇u dΩ instead of Muu in (18). In order to perform the numerical inf-
sup test, a sequence of successive refined meshes is considered. The objective
is to monitor the inf-sup values, β , when h decreases. If a steady decrease in
log(β) is observed when h goes to zero, the element is predicted to violate the
inf-sup condition and said to fail the numerical test. But, if the log(β) value
is stable as the number of elements increases, the test is numerically passed.

7



3 X-FEM Discretization

3.1 Displacement field

With classical finite elements, the approximation of a vector field u on an
element Ωe is written as:

u(x)|Ωe
=

nu
∑

α=1

uα Nα
u(x) (19)

where nu is the number of coefficients describing the approximation of the
displacement over the element, uα is the αth coefficient of this approximation
and Nα

u is the vectorial shape function associated to the coefficient uα. Within
the partition of unity, the approximation is enriched as:

u(x)|Ωe
=

nu
∑

α=1

Nα
u



uα +
nenr
∑

β=1

aα
β φu

β(x)



 (20)

where nenr is the number of enrichment modes, aα
β is the additional dof as-

sociated to dof α and φu
β stands for the βth scalar enrichment function. The

number and the expression of the enrichment functions vary with the problem
to model. The expression of this enrichment function will be recalled for holes,
inclusions and fracture mechanics in the next sections.

3.2 Pressure field

Using the same scheme, the pressure approximation is written as:

p(x)|Ωe
=

np
∑

α=1

Nα
p (pα + aα φp(x)) (21)

where np is the number of coefficients describing the approximation over the
element, pα is the αth coefficient of this approximation and Nα

p is the scalar
shape function associated to the coefficient pα, aα is the additional dof asso-
ciated to dof α and φp stands for the scalar pressure enrichment function.
The key issue is the combined choice of enrichment functions φu and φp such
that the whole enriched approximation (displacement and pressure) passes the
inf-sup condition.
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function are the most effective since they pass the inf-sup test. On the contrary,
Heaviside based strategies do not pass this test and should not be considered.
The formulations where only the linear part of the displacement is enriched
(N˚4 and 8) with the ridge are interesting, since less degrees of freedom are
involved in the approximation. This should be important in the context of an
extension to three dimensional studies.

4.3 Incompressible fracture mechanics

The resolution of compressible fracture mechanics problems has been exten-
sively studied in the context of the X-FEM for both 2D [39,18,40,32,24] and
3D fracture mechanics [21,22]. The most common enrichment strategy consists
in using the asymptotic displacement field as an enrichment for the displace-
ment finite element approximation. In the context of incompressible media,
the analytical asymptotic displacement field (Westergaard solution) is shown
to be identical to the limit of the compressible one. The asymptotic evolution
of the pressure field can be obtained also using the Westergaard solution.

p(r, θ) =
2KI

3
√

2 π r
cos

(

θ

2

)

+
2KII

3
√

2 π r
sin

(

θ

2

)

(25)

φu =

{√
r sin

(

θ

2

)

,
√

r cos

(

θ

2

)

,
√

r sin

(

θ

2

)

sin(θ),

√
r cos

(

θ

2

)

sin(θ)

}

(26)

We use these expressions as an enrichment for the pressure field in the near-tip
region. Thus, the enrichment basis for the pressure is expressed as:











φp
I = 1√

r
cos

(

θ
2

)

φp
II = 1√

r
sin

(

θ
2

)
(27)

Note that a classical Heaviside enrichment is considered for both pressure and
displacement for nodes whose support is fully cut by the crack, and that only
the Mini element is considered hereunder.

4.3.1 Convergence study

Consider a domain Ω = [−1, 1] × [−1, 1] under tension (see Figure 23). The
tensions applied on the boundary of the domain are related to the exact ten-
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lation. Moreover, the use of the geometrical enrichment leads to an improved
convergence case, similar to the compressible rate. Finally, degrees of freedom
can be saved by only enriching the linear part of the approximation.

5 Conclusion

Some strategies for enriching existing mixed finite element methods have been
presented. These strategies are natural extensions of the displacement-based
X-FEM, and are shown to preserve the classical finite element convergence
rate. The stability of these strategies has been shown through the numeri-
cal inf-sup test. However, quadratic-based elements could not be tested com-
pletely, as in some cases the linear interpolation of the level-set leads to a
degraded rate of convergence. The construction and the validation of isopara-
metric quadratic elements will be the subject of a forthcoming paper. The
method should also be applied to finite strain mechanics, as the fulfilment of
the inf-sup condition seems to be a prerequisite to build efficient large strain
formulations [42].
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A Analytical solution for curved interface

We did construct a specific analytical solution to investigate the convergence
of the X-FEM. It represents two perfectly bounded rings made from different
materials (see figure 7). The loading is chosen such that:

b1r(r)= 3 W3 c2 + 2 W2 c + W1 (A.1)

b2r(r)= 3 V3 c2 + 2 V2 c + V1 (A.2)

Tr =W3 c3 + W2 c2 + W1 c + W0 (A.3)

Tθ =−2
µ1µ2 a2 b2

c

(

−a2 µ1 c2 + a2 µ2 c2 − µ2 b2 c2 + a2 b2µ1

)

(A.4)

Under these boundary conditions, the stress field components are:

σ1
rr =−

(

W3r
3 + W2r

2 + W1r + W0

)

(A.5)

σ1
θθ = σ1

rr (A.6)

σ1
rθ =

−2µ1µ2 c a2b2

(−a2µ1c2 + a2µ2c2 − µ2b2c2 + a2b2µ1) r2
(A.7)

σ2
rr =−

(

V3r
3 + V2r

2 + V1r + V0

)

(A.8)

σ2
θθ = σ2

rr (A.9)

σ2
rθ =

−2µ1µ2 c a2b2

(−a2µ1c2 + a2µ2c2 − µ2b2c2 + a2b2µ1) r2
(A.10)

The displacement field components are:

u1
θ(r)=− c b2µ2(r

2 − a2)

(−a2µ1c2 + a2µ2c2 − µ2b2c2 + a2b2µ1)r
(A.11)

u1
r(r)= 0 (A.12)

u2
θ(r)=−c

−r2a2µ2 + r2a2µ1 + r2µ2b
2 − a2b2µ1

(−a2µ1c2 + a2µ2c2 − µ2b2c2 + a2b2µ1)r
(A.13)

u2
r(r)= 0 (A.14)

And the pressure evolution is:

p1(r) =W3r
3 + W2r

2 + W1r + W0 (A.15)

p2(r) = V3r
3 + V2r

2 + V1r + V0 (A.16)
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Moreover, in the example section 4.2.1, we have considered:

µ1 = 1/3 µ2 = 10/3

a = 0.4 b = 1.0 c = 2.0

W3 =−10.0 W2 = 20.0 W1 = −5.0 W0 = −10.0

V3 = 0.0 V2 = −10.0 V1 = 5.0 V0 = 0.0

B Analytical solution for a straight interface

The problem (see figure 15) is built so that the interface between the two
materials is straight. The loading is chosen such that:

b1x = 6µ1 x (B.1)

b1y =−6 µ1 y − 2 µ2 + 3 y2 (B.2)

b2x =−24 µ2 x (B.3)

b2y = 24 µ2 y − 2 µ2 + 6 y2 (B.4)

T1x = 6 µ1 x (B.5)

T1y =−6 µ1 y − 2 µ2 + 3 y2 (B.6)

T2x =−24 µ2 x (B.7)

T2y = 24 µ2 y − 2 µ2 + 6 y2 (B.8)

Under these boundary conditions, the stress field components are:

σ
1

=







2 µ1

(

−3 y2 − 2 µ2y
µ1

)

− y3 µ1

(

−
(

6 y + 2 µ2

µ1

)

x + 2
)

µ1 (− (6 y + 2 µ2/µ1) x + 2) 2 µ1

(

3 y2 + 2 µ2y
µ1

)

− y3





 (B.9)

σ
2

=







2 µ2 (12 y2 − 2 y) − 2 y3 µ2

(

− (−24 y + 2) x + 2 µ1

µ2

)

µ2

(

− (−24 y + 2) x + 2 µ1

µ2

)

2 µ2 (−12 y2 + 2 y)− 2 y3





 (B.10)

The displacement field is:
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Fig. B.3. Bimaterial problem with straight interface: pressure field.
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