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Abstract

The primary purposes of this report are the
identification of those potential energy-conservative
pipeline innovations which are most energy-effective
and cost-effective, and the formulation of recommendations
for the R, D, and D programs needed to exploit those
opportunities. From a candidate field of over twenty
classes of efficiency improvements, eight systems are
recommended for pursuit. Most of these possess two highly
important attributes : large potential energy savings and
broad applicability outside the pipeline industry. The
R, D, and D program for each improvement and the recommended

immediate next step are described.
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Preface

Because of the wide scope of the subjéc£ matter of -
this study, and the consegquent bulk of this report, we have
attempted to so organize it that it may be conveniently read
to three levels of penetration.

For the first level, the reader can rapidly ﬁndérstand
from Sections 1.0 and 2.0, in less than a dozen pages, our
objectives, conclusions, and recdmmendations. Many readers
will have no particular need to read further.

Section 3.0 presents, in another two dozen pages,
the broad outlines of the research, development, and demonstrat-
ion (R, D, and D) programs which are needed to exploit the
energy conservation opportunities which have been identified
during the study. A brief summary of the rationale supporting
each recommendation is also included, and many readers at that"’
point will have satisfied their purposes and will not need to
continue. Thus, the second level of penetration is reached
by completion of one or more of the subsections of Section 3.0.
To conserve bulk and weight, Sections 1.0, 2.0 and 3.0 may thus
be separated from the remainder of the report and bound as a
separate summary. '

' Because Section 3.0 is designed as a stand-alone
chapter, it necessarily contains some duplication of material
with the later sections. Thus, the reader who wishes to hear
everything that we say on any particular improvement area(s)
need only read the introduction to Section 3.0 and then procéed
directly to the appropriate later chapter(s), as his interest

may require.

ii
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We have been assisted in this study by many organizations,

too numerous to acknowledge individually. However, we are

attempting to remember each of them with a copy of this report.
Comments, criticisms and additional information are earnestly

‘solicited from these and all other readers, and should be

directed to

Dr. William Banks
Systems, Science and Software

P.O. Box 1620
La Jolla, Ca. 92038
Telephone: 714-453-0060

We pledge that all such feedback will be coordinated,
analyzed, and submitted to our clients, Mr. Richard Alpaugh,
Project Manager, Division of Tfansportation Energy Conservation,

ERDA - Washington, and Ms. Estela Romo, ERDA - Oakland.

William F. Banks

James H. Horton
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1.0 OBJECTIVES

1.1 Purpose of the Project

The work reported here is a part of a project which
is being conducted by the team of Systems, Science and Software
(S3) of San Diego, and Pipe Line Technologists, Inc. (Pipetech)
of Houston, under ERDA contract E(04-03)-1171, "Energy Study of
Pipeline Transportation Systems." The basic purpose of the
project is to assess the susceptibility of the oil, gas, and
Aother pipeline industries to energy-conservative technological
innovations, and to identify the necessary research, development,
and demonstrations (R, D, & D) to exploit those opportunities.

The project final report is being published as S3
report SSS-R-77-3020, "An Energy Studylof Pipeline Transportation
Systems." That final report will be a summary, combining the
results from the seven task reports listed in Table 1.1~1. As
will be noted from the table, this present report is one of those

task reports.

1.2 Purpose of this Report

This report presents the results of Task 3, which has
two primary objectives :

(1) Identification of those potential energy-
conservative innovations which are most energy-effective and
cost-effective.

(2) Formulation of recommendations for the R, D, and D

programs which are needed to exploit those opportunities.

1.3 Scope Limitations

This report does not treat the subject of R and D
strategies and the selection of certain of the recommended
projects for pursuit in preference to the others. This approach
was not taken under any delusions fegarding the ultimate
necessity to think small, that is, to eliminate some projects,

reduce others, and defer yet others, and these questions will
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TABLE 1.1-1
Project Reports
Associated
Title Task
An Energy Study of Pipeline Trans- All
portation Systems :
Economic Models of Pipeline Trans- 1
" portation Systems ‘(partial)
Energy Consumption in the Pipe- 1
line Industry (partial)
Slurry Pipelines.- Economic and 2.1
Political Issues - A Review
Federal Regulation of the Pipeline 2.2
Industry
Efficiency Improvements in Pipeline 3
Transportation Systems
Recommendations for Energy-Conserva- 4
tive Research and Development in (partial)
Pipeline Transportation (published
only in combination with R-3025)
Energy Conservation Opportunities 4
in the Pipeline Industry (partial)

tion Model -
Manual and System
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be addressed in the final project report. For the present,
however, we are still thinking big, that is, identifying
opportunities to save large amounts of energy, and defining
the programs that would permit the exploitation of those

opportunities.



K=3U«D

2.0 SUMMARY

Most of the energy conservation opportunities which
are identified here possess two highly important attributes :

(1) The potential energy savings are large, that is,
of the order of several hundredths of a quad.

(2) The technology whereby the energy savings may
be realized is broadly applicable outside the pipeline industfy.

An examplé of attribute (1) will be found in Section 4.1
below, where it is seen that bottoming engines and internal
cooling of IC engines may.each easily aspire, through-ultimate
industryfwide application, to savings well over a tenth of-'a
quad.

An example of attribute (2) will be found in Section 4.3,
where the somewhat startling, though still tentative, conclusion
is derived that the pipeline application is likely to be a much
more attractive breeding ground for fuel cell development than
the one upon which virtually all of the money is currently being
spent, thét is, the electric utility application. Rather than a
commentary upon misdirection of R & ﬁ, this observation merely
reflects the fact that, for various reasons, the utility industry
and its equipment suppliers have been energetic in persuading
the government to support their R‘& D, while the pipeline
industry has chosen to go its own way. It is, of course, the
identification of just such dpportuhities as this which is the

basic purpose of the present study.

2.1 Recommended Programs

Table 2.1-1 presents the eight programs recommended
for pursuit. This study has concluded that each of the listed
programs satisfies the first three of the criteria listed below:

1 - Energy-effective A

2 - Cost-effective

3 - Technically feasible on a moderate (3-7 year) time
scale

4 - Broadlylapplicable outside the pipeline industry.

2-1
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Table 2.1-1

RECOMMENDED RESEARCH, DEVELOPMENT AND DEMONSTRATION

Progran Report Section No.
1. Gas-fired Combined Cycle Compresser Station 4.1.1.4
2. Internally Cooled Internal Combustion Engine 4.1.2.2
3. Methanol-Coal Slurry Pipeline 5.2.2
4. Methanol-Coal Slurry-Fired and Coal-Fired Engines 6.1.1.2

5. Indirect-Fired Coal Burning Combined Cycle Pump Station 6.1.1.2

6. Fuel Cell Pump Station ‘ 4.3.6.2
7. Drag-Reducing Additives in Liquid Pipelines - 8.2
8. Internal Coatings in Pipelines 8.3
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Of the eight recommended programs, the first six on Table 2.1-1
additionally satisfy criterion 4, that is, only programs 7 and

8 are pipieline-peculiar.

For the benefit of the reader who does not require a full,
detailed explanation, the recommended programs are succintly
summarized below. Section 3.0 describes each recommended pro-

gram in further depth.

It is recommended that the programs discussed below be
undertaken. In each case, the prdgram should be coordinated
with other active and planned ERDA programs and with other
government agencies previously and/or currently engaged in

similar or related programs.

(1) Gas-Fired Combined-Cycle Compressor Station.

A study and demonstration of a Brayton-Rankine and/or
Otto-Rankine combined cycle power plant should be conducted using
advanced second or third generation gas turbines with organic
Rankine bottoming cycle. The program, inéluding selection of
engine type, size selection, should be primarily oriented to
pipeline applications but with broad application potential to

utilities and other industrial. work.

(2) Internally Cooled Internal Combustion Engine

A study and demonstration of an internally cooled reciproc-
ation internal combustion engine, with bottoming cycle, should be
conducted. The objective should be to develop the necessary
technology to retrofit existing reciprocating pipeline drivers,
and at the same time lay the groundwork for development and
application of internally cooled internal combustion engines for

a broad spectrum of non-pipeline applications.
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(3) Methanol-Coal Slurry Pipeline

A study and demonstration of methanol-coal slurry pipeline
should be conducted. Their potential for delivering coal over
long-distance pipelines at relatively low cost, with low net
water requirements, and with a broad spectrum of end use options
is extremely attractive. Conversion of existing pipelines to coal-
0il slurry transport may offer a convenient transition to- the
coal-methanol mode, and a brief comparison of the two systems

should therefore be made.

(4) Methanol—Coal—Slurry—Fired and Coal-Fired Engines

A study and experimental work should be conducted to assess
the potential for operating gas turbines on methanol-coal slurry
and on pulverized coal separated from slurry. The program shoﬁld
supplement previous investigations of hot corrosion and erosion
problems in turbines and should include work to identify the
fouling mechanism, means of inhibiting fouling, and approaches
. for minimizing the effect of ash deposits on erosion of turbine
hot-end components. The work should be closely coordinated and
compatible with the study recommended in 3.3 above relating to

methanol-coal slurry pipelines.

(5) Indirect-Fired Coal-Burning Combined Cycle Pump Station

A study and demonstration should be conducted of fuel cell
power sources in combination with DC motors in a liquid pipeline
pump station. The pipeline application offers a unigue and ex-
tremely attractive application for fuel cell power plants for two
reasons. First, the use of DC motors in the pipeline application
would avoid the need for inverters to convert the fuel cell out-
put to AC. Freed of this burden, the economics of the pipeline
application for fuel cells becomes much more attractive than the:
electric utility application. Second, the nature of petroleum
products pipeline operation is such that the use of DC motors
would enable an energy saving in the order of 5-10%. The fuel

cell, of course, offers the opportunity to realize that improve-

2~4
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ment. The combination of these two factors indicates that
the pipeline is the preferred application for early commerciali-
zation of the fuel cell. Accordingly, it is recommended that

continuing ERDA fuel cell programs be reconsidered in this light.

(6) Fuel Cell Pump Station

A study and demonstration should be conducted of high effi-
ciency, indirect-fired gas turbines with Rankine bottoming cycle,
using pulverized coal fuel. The program should capitalize on
existing technology in closed Brayton cycle engines which have
operated successfully on coal in Europe, but at relatively low
efficiency because of limited cycle temperatures. Effort should
be concentrated on achieving substantial increases in efficiency
through the use of advanced,high-temperature materials in the
air heater and the addition of an organic Rankine bottoming

system.

(7) Drag-Reducing Additives in Liquid Pipelines

Further research should be conducted on drag-reducing addi-
tives for liquid pipelines, including: basic research into
the mechanism of drag reduction; system studies to identify
operating problems and assess economic aspects; and a demon-
stration to prove the soundness of the concept in practical

pipeline operation.

(8) 1Internal Coatings in Pipelines

Demonstrations should be conducted of internal coatings
in both gas and liquid pipelines to determine quantitatively
their effect on improving pipeline flow efficiencies and to
assess the economic potential of their further use in liquid
pipeline. The program should begin with analysis and testing
tn establish the longevity and dependability of present commer-
cial coatings which are applied in place, followed by research
and development if necessary, and a demonstration in a full

station-to-station section of an operating pipeline.
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2.2 cCandidate Improvements

Early in the study the categories of efficiency im-
provements listed in Table 2.2-1 were identified as candidates
for examination. With few exceptions the numbered improvements
represent classes of devices rather than a single device. Thus,
even though an improvement category may not appear in the earlier
list of recommended programs, it may well be that future inven-
tions will justify a program in that category. ¥For example,
this study was unable to'identify an electric motor improve-
ment which would be appropriate for ERDA support for pipeline
application. However, the possibility alwaysvexists that a
new idea and/or fresh approach, e.g., the Wanless motor, may

appear and offer an opportunity for energy savings.

Additionally, it is'well to note that some of the improve-
ments in Table 2.2-1, for example, capsule pipelines, were
excluded from Table 2.2-1 on the basis of very preliminary
analyses. This exclusion could safely be made at this time
because, even if that preliminary conclusion is reversed after
further study, the realization of the improvement is still well
into the future. Accordingly, it is strongly recommended that
the list and the associated conclusions be maintained by recur-
rent review and update, so that future opportunities can be

exploited as they appear.




*

TABLE 2.2-1

Classification of candidate efficiency improvements

Heat Engine Improvements

- Bottoming engines

- Gas turbine regenerators

Internal cooling of internal combustion engines
- Slurry-fired engines

- Coal-fired engines

- Indirect-fired, coal-burning engines

AU W
|

Non-Heat Engine Energy Conversion

7 - Fuel cells
8 - Electric motor improvements

Flow=-Inducer Improvements

9 - Pump improvements
10 - Compressor improvehients

Slurry Pipelines

11 Coal-water system improvements
12 Coal-methanol systems

13 - Cryogenic systems

14 - Pneumatic slurries

Drag Reduction

15 - Heating
16 - Additives
17 - Internal coatings

Leak Prevention

18 - Internal coatings

Operational Improvements

19 - Automatic control of transients
20 - Computerized optimization of duty cycles
21 - Improved capital utilization

None of the Above

22 - Capsule pipelines
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3.0 RECOMMENDED R,D,&D PROGRAMS

, This section presents the broad outlines of the pro-
grams of research, development, and demonstration which are
needed to realize the energy-conservative potential of the
techhological innovations that are discussed in later sections

of this report.

In each case the recommended program consists of the six

phases which are described below:

Phase 1 - Identification of the Opportunity

This phase has been in progress under the present
study, and with the publication of this report is now complete.

Phase 2 - Concept Validation

. In this phase the concept is validated analyt-
ically and a definitive program plan is developed.

Phase 3 - Research and Development

The research and development identified.
ander Phase 2 is performed in accordance with the approved R&D
nlan. The R&D program continues through the design phase

(Phase 4) and possibly beyond.

Phase 4 - Syslem Desiyn

A preliminary design is prepared of the

demonstrator system on the selected site.

Subphase 4.1 - Site Selection - Several candidate sites

are identified and the one best meeting the criteria developed
under Phase 2 is selected.

Subphase 4.2 - Preliminary Design - A preliminary

design is prepared of the demonstrator system on the selected site.
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— - Subphase 4,3 - Detailed Desicn - The detailed design

of the demonstrator, consisting of drawings and specifications
suitable for use in construction, are prepared and documented,
along with supporting design analyses. This subphase is paced

by the progress of the research and development under Phase 3

above, which will have been proceeding concurrently with Phase 4. ]

Phase 5 - Demonstrator Construction

The demonstrator system is constructed. Data
regarding construction costs, design feedback and technological
difficulties are collected, analyzed, and published in accord-

ance with the program plan which was developed under Phase 2.

Phase 6 - Demonstrator Operation

The demonstrator system is operated in accord-
ance with the program plan. Data regarding the operation is
collected, analyzed, and published in accordance with the pro-

gram plan.

The costs of these programs vary widely. The most widely
varying component is the research and development, Phase 3.
In some cases, for example the viscosity-reducing additives dis-
cussed in Section 3.8 below, a few hundred thousand dollars may
be adequate. In other cases,'for example internal cooling of IC

engines, the R&D may run into the millions.

As noted above, Phase 1 has been identified in each cése
as the opportunity identification under this present stﬁdy.
Thus, the next phase for each of the programs is the concept
validation phase, which is expected to consist of major subphases

having the following objectives:

1) To validate the concept analytically and, in some cases,

- experimentally.
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2) To prepare the system assessments which establish fea-
sibility from several major.viewpoints, e.g., technical, econo-

mic, environmental, etc.

3) To prepare any additional supporting studies and assess-
ments which may be needed or desired, e.g., alternate approaches,

alternate national policies, etc.

4) To identify the necessary experiments and tests and to

formulate the plan for their performance

5) To define the complete R,D,&D program and to formulate
the complete detailed program plan.

Figure 3.0-1 presents a generalized Phase 2 schedule, in
which the effort to achieve each of these objectives is desig-
nated as avsubphase. The major second-tier subphases (tasks)

under the primary subphases are also shown. The 12-month period

indicated for completion may be shorter or longer for any specific

program, depending upon its nature and the availability of funds.
The magnitude of the total Phase 2 effort depends on the nature
of the necessary input and of the 1laboratory experiments (Sub-
phase 2)_' and/or supporting assessments (Subphase 3).

In some cases, an adequate Phase 2 may be performed within two
personiyears of effort, while in others, four or five person-
years may be necessary. For preliminary budgeting and planning

an estimate of approximately three person-years is suggested.
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3.1 Gas-fired Combined Cycle Compressor Station

It is recommended that a study and demonstration of
a Brayton-Rankine and/or Otto/Rankine combined cycle power
plant be conducted. An advanced second or third generation
gas turbine should be used as the primary power source for the
Brayton-Rankine cycle power plant, and a modern gas reciprocating
engine, representative of those used in pipeline service, as
the primary source for the‘Otto/Rankine plant. For reasons
discussed in Section 4.1.1.4 below, the bottoming system in
either case should be of”a Rankine type using an organic work-
ing fluid. The program, including selection of engine type
and size, should be primarily oriented toward pipeline applica-
tions. However, in most cases broad application 'of the newly
developed technology to other industrial uses is possiblé,
provided that the R,D,&D program is planned and executed with

those applications as secondary objectives.

As is discussed in Section 4.1.1.4, both the organic
fluid Rankine cycle and the steam Rankine cycle offer pdtential
for substantial increases in overall thermal efficiency through
‘waste heat recovery. However, the organic Rankine bottoming
cycle offers significantly greater improvement and appears to
be more cost effective, both for gas turbines and recipro-
cating engines. With available technology, the organic
Rankine system provides over one-third more power than a
comparable steam plant, with an organic turbine that ‘is less

than one-half the size of a steam turbine.



Of course, it is possible to advance the technology of steam
turbines, and at least one manufacturer has a development pro-
gram in progress to accomplish this objective. However, the dis-
cussion of Section 4.1.1.4 shows that the superiority of the
organic system derives from the thermodynamic properties that
may literally be designed into the fluid, énd is independent
of the technology of the expander. '

For first generation gas turbines, which typically have
thermal efficiencies in the 18-22% range, bottoming cycles
offer only marginal improvement over regeneration as a means of
increasing efficiency, and are therefore not generally cost-
effective, even at current and projected fuel costs. However,
for second generation turbines, which have efficiencies in the
25-30% range and are commonly used in thé gas pipeline industry,
the bottoming cycle offers distinct advantages. This is also
true for third generation turbines (simple cycle machines with
over 30% efficiency), although they are in only limited use at
present in pipelines. The primary reason is that turbine inlet
temperatures have risen with succeeding génerations to such a
degree that even though the newer machines are more efficient,
the exhaust temperatures have also risen. In these high tem-
peraturé, high efficiency machines,the pressure ratios continue
tn increase as well, so that regenerdtion progressively loses
attraction while bottoming gains. Projected efficiencies for
the gas turbine-Rankine combined cycle are shown in Fig. 3.1-1.
In a typical case, using a second generation simple cycle gas
turbine with efficiency of 27%, an efficiency of well over 40%

is projected in a combined cycle power plant with an organic

Rankine bottoming engine.

Reciprocating engines, which constitute approximately half

of the installed pipeline compressor power, are also strong
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candidates for bottoming. Even with the relatively high effi-
ciency reciprocators, organic Rankine bottoming cycles can
realize perfofmance improvements above 20%, so that large,
nationwide energy savings are possible. This point is illus-
trated in Fig. 3.1-2.

In this connection, it is important to recognize that the
relative heat rate improvement that may be achieved on a partic-
ular engine is not necessarily of great importance. Rather, total
potential nationwide savings should be the primary objective,
and thé size of this total may be unrelated to relative heat
rate improvement. For example, one might be inclined to conclude
that because a 35% heat rate improvement can be achieved by
bottoming a turbine as against, say, 20% for a reciprocator,
that the turbine is a far better application. However, this is
not necessarily true because it may be only a question of whether
to add a 2000-hp bottomer to the turbine or a 1000-hp one to
the reciprocator. And it may well be that more energy can be
saved by putting more, though smaller, bottomers on reciprocators.
These are the kinds of questions to be addressed in the system

assessments under Phase 2.

A central feature of the study phase of this program should
be a careful, balanced appraisal of the primary engine options.
There are several major factors to consider in this appraisal.
One is the early definition of criteria for the entire demon-
stration program. As has just been discussed, efficiency
criteria should include not only the percentage improvement in
heat rate of the engine to which the bottoming unit is'applied,
but the overall system efficiency and its effect on total energy
savings across the pipeline industry. Broad applicability of
the engine is another important consideration. The engine size
and type should be representative of a broad range of pipeline
applications and should also consider other applications to
which the technology can be applied. System analysis and com-
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ponent design and cost evaluations should include upsize and
downsize variations around the baseline engine configuration,
with a view of en;ompassing a product line to exploit a large
portion of the total market.

For example, it might be concluded that the baseline for
development 'should be a 1000-hp engine for bottoming large
reciprocators, while the upsize model should be a 2500-hp ver-
sion for large turbines and the downsize model shbuld be a
300-hp version which could be applied to both reciprocating
gas engines and to diesels. It is not suggested that a program
to initially develop three engines be undertaken, but recog-
nition should be given to the ultimate need for the other models
so that the gfoundwork can be properly laid for their subse-

quent development.

Another important feature is site selection. It will be
governed principally by the characteristics and commercial
applicability of the engine which is selected for the bottoming
cycle development. The site selection must also be dictated by

the long-term needs of the program.

The risk areas in this program involve primarily the selec-
tion of the organic working fluid and the components in the
bottoming system. The working fluid selection involves such
major considerations as thermodynamic characteristics, long-
term thermal stability, compatibility with materials used in
structural components, safety characteristics (flammability,
toxicity, etc.), freezing temperature, and cost. Other related
risk areas are rotating machinery bearing and seal performance,
turbine aerodynamic design, and boiler operation. All of these
factors should be carefully assessed through analysis and through '
laboratory experimentation as necessary during the study phase

of the program.



3.2 Internally Cooled Internal Combustion Engine

It is recommended that a study and demonstration be
conducted of an internally cooled (adiabatic) reciprocating
internal combustion enginé for pipeline driver applications.
The engine should also accept the bottoming engine being devel-
oped under recommendation 3.1 above. The objective should be
to develop the necessary technology to retrofit existing recip-
rocating pipeline drivers, and at the same time to lay the
groundwork for development and application of internally cooled
internal combustion engines for a broad spectrum of nonpipeline

applications.

This program, although similar in some respects to that de-
scribed in Section 3.1 and related in that the bottoming engine
should be installed on the.interhally cooled engine, is a sep-
arate and distinct effort and is recommended on its own merits
as an additional program. Because of the fundamental nature of
‘the engine development involved in the uncooled engine concept,
it will require a very considerable research and development
effort. The potential payoff in terms of increased energy savings,
however, is so great that the investment-is well justified. It
should be possible, through a well planned and executed program,
‘to develop a technology which will be applicable to the millions
of diesel engines in service outside the pipeline industry. Thus
it is concluded that the program is entirely justified in view

of the tremendous potential for energy conservation.

As discussed in Section 4.1.2 below, the best potential for
achieving significant gains in fuel economy of the diesel engine
is to apply the engine in a combined cycle system utilizing
either a Brayton or Rankine bottoming cycle to recover part of

the exhaust eneryy.

The feasibility of the diesel-Brayton combined cycle (turbo-

compound) in an internally cooled 2-stroke diesel engine has
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been proved in research and exploratory development programs at
Engine Systems, Inc., supported by the Army Tank-Automotive
Research and Development Command (TARADCOM). Studies have in-
dicated a potential reduction of 27-45% in specific fuel con-
sumption, together with a substantial reduction in specific
weight over comparable commercial diesel engines. A similar
research program at Cummins Engine Company (also partially sup-
ported by TARADCOM) on a 4-stroke diesel adiabatic turbocompound
engine with high-temperature ceramic components in the cylinders
and no external cooling has indicated potential for similar large

reductions in fuel consumption.

In natural gas reciprocating engines, the principle of
using exhaust waste heat energy for space heating, air condition-
ing, and so on, has been applied in a number of on-site power
(total energy) installations. Only limited effort to date has
been directed toward adapting bottoming cycles to gas reciprocat-
ing engines to produce additional shaft power; however, the same
principles as wused in the diesel applications mentioned above
can be adapted to gas engines, whether they are operated as dual
fuel type (pilot injection of diesel fuel plus main change of
gas) or as straight Otto cycle spark ignited engines.

As is discussed in Section 4.1.3 below, the heat balance
data on a typical 4-stroke, naturally aspirated gas engine
shows that approximately 25-30% of the input energy is rejected
in jacket water cooling. If it were feasible to cool the engine
internally in a manner similar to that described above for the
internally cooled diesel engine, much of the heat could be re-
covered from the engine exhaust by a bottoming-engine to pro-
duce additional shaft output. This of course is equivalent to
turbocompounding the gas engine in the same manner as that dis-
cussed for the diesel engine. The expander for the bottoming
cycle could in principle be either an open cycle gas power tur-
bine such as used in the diesel proyrams described above, or a

vapor expander (turbine or reciprocator) in a closed Rankine
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system such as that being developed under recommendation 3.1

above.

The internal cooling concept has not been explored in any
depth for gas engines. However, from what Has been said, it
is seen that if internal cooling development can be conducted
in a way that is applicable to both gas and diesel engines, the
benefits would extend far beyond the pipeline industry. They
would accrue in vehicular and marine transportation and in many
stationary applications as well. As indicated in Section 4.3.1,
if it were possible to retrofit half of the present population
of reciprocating gas engines used in pipelines and if the economic
value of natural gas escalates of over $2/Mcf, a saving of over
$20 million per year could conceivably be realized for pipeline

transportation alone.

As is indicated in Fig. 3.0-1 (Subphase 3), one of the
first steps in the concept validation phase of the program is to
conduct a detailed study of the presently used pipeline engiges
in order to select a suitable size and type of engine which
. could possibly be modified to the internally cooled principle.
Recent statistics from the American Gas Assn. show that over
3500 reciprocating gas engines ranging in size from 1000 to 13,500
hp, are presently installed in gas pipelines. Over 70% of these
engines fall in the 1000-2000 hp range. Of the total population
of these engines, almost 80% are of the 2-stroke type. This
suggests that the most representative engine to selcct for the
R&D effort would be a 2-stroke engine in the 1000—2000 hp range.
However, there are other considerations which may weigh in favor

of the 4-stroke engine.

The 2-stroke engine compressors are manufactured by two
major suppliers and are predominantly of the integral type, i.e.,
engines of in-line or V-angle configuration with integrally con-
nected horizontal compressor cylinders. This could present some
difficulties in converting the engine to a bottoming system

wherein the compressor would be a separately driven unit.
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Many of the 4-stroke engine-compressors in service are also
of the integral type. Overall, however, there are mbre sources
of separable engine-compressors in the 4-stroke category from
which to select. The Phase 2 effort should determine the desira-
bility, technical feasibility, and practicality of modifying any
of the engine compressor types presently in service so that the
additional power can be absorbed as additional compression work.
If this approach is not practicable, an alternate approach would
be to select one of the later design engines with better perform-
ance characteristics and utilize it as the vehicle for an inter-
nally cooled engine development to drive a separable compressor

as well as other load devices.

The principal probleﬁ area in this program, once a suitable
engine is selected for modification, lies in the adaptation of
the internal cooling principle to the engine. Considerable
research and exploratory development effort, preferably starting
on a single cylinder version of the engine, will be required to
determine the proper design and high temperature materials com-
bination required to achieve performance objectives. A full
scale engineering development and extensive reliability testing
must follow in order to demonstrate a viable engine design for
the commercial market. For those reasons, the program must be
regarded as intermediate to long term in nature, with the first

practical application likely in the late 1980's..

3.3 Methanol-Coal Slurry Pipeline

It is recommended that a study and demonstration of a
methanol-coal slurry pipeline be conducted. The potential of
this concept for delivering coal over long-distance pipelines at
relatively low cost, with low net water requirements and with

a broad spectrum of end use options, is extremely attractive.

Leonard Keller, President of the Methacoal Corp., Dallas,
Texas, holds patents and disclosures relating to the methanol-

coal slurry, which he calls Methacoal. He describes Methacoal
i
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as a pseudo-thixotropic, or shear-thinning, mechanically stabil-
ized suspensoid. At rest it appears to be a moist, solid mass
of black mud, but when stirred or agitated, it becomes thinner
and flows easily. The flow characteristics are such that it is
typified by viscous or laminar flow, rather than the turbulent

flow which is typical of coal-water slurries.

The attractiveness of the Methacoal concept derives from

its potential advantages in two broad areas:

1) Potential advantages of methanol ovef water as the
carrier fluid of a coal slurry, and

2) Potential advantages of the methanol slurry as a fuel,
or of the partially separated components of the slurry, over

straight coal as a fuel.

'3.3.1 Advantages of Methanol as Carrier

Methanol possesses two strong advantages, in prin-
ciple at least, plus a lesser one, over water as the coal slurry

carrier fluid:

l) For equivalent amounts of energy transported, the meth-
anol slurry requires less water as input to the system than a

water slurry system;

2) For equivalent amounts of energy transported, the meth-

anol slurry consumes less energy than the water slurry;

3) Depending upon the methanol conversion process, most of
the sulphur may not only be removed from the coal but may be re-
covered in usable commercial form. Thus, the sulphur content
of a 2 to 1 slurry is almost one-third less than that of the
feed coal, or almost one-fourth less for a 3 to 1 slurry. What
would otherwise be a troublesome pollutant may be recovered as

a marketable by-product.

These advantages result from several characteristics which
are described in Sections 5.2.1.2 and 5.2.1.3 below, and are

summarized briefly here.
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1. High efficiency of coal to slurry conversion. While the

direct conversion of coal to methanol is at most 50% efficient,
the equivalent efficiency of conversion for the entire slurry
system potentially approaches 90% when the slurry itself is con-

sidered as a fuel.

2. Reduction of system water requirement. For a methanol-

coal slurry which is two-thirds coal, the carrying capacity ad-
vantage over coal-water slurry is calculated'tobbe 3.2. For a
three-fourths coal-éne—fouth methanol system, this advantage be-
comes 4.35. Thus, the water requirement for the methanol slurry

may be three to four times less than that of water slurry.

3. Benefits of dry coal. TIf the coal entering the slurri-

fier at the head of the methanol slurry pipeline is completely
dry, several additional benefits would accrue, as indicated below.
Some of these would be realized in the pipeline operation and

some in the power plant.

a. The first benefit derives from the large increase
in pipeline efficiency because it is no longer necessary to trans-
port the water. For Western coals, which generally have high
moisture content, this benefit can be very large. For example,
with a coal having a one third moisture content, the efficiency
of the pipeline is increased by 50% if the coal is dried at the
head of the line. This increase is realized as a direct per-
centage increase in the number of Btu transported per Btu con-

sumed in the transportation process.

‘ b. The second benefit is the further reduction of
the system water requirement. For carrying ratios in the range
of two to three and moisture content in the range of 20% and
greater, the net.advantage of methanol over water as a carrier

of dried coal is calculated to be in the range of four to five.

c. The third potential benefit from drying the coal
is the possibility of recovering the drying energy from the
methanol conversion process as electric power at what is equiva-

lent to zero transportation cost..

3-16
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3.3.2 Fuel-form Options

At the pipeline terminal many potential options
.are available for realizing the value of the methanol. All re-
present some advantage over plain coal, and a strong advantage
over the wet coal that is separated from a water slurry. The

principal options are listed below:

1) The slurry may be burned directly as a fuel in power

plant boilers.

2) The slurry may be separated into powdered coal and
alcohols which, in turn, provide fuel for several applications.

The suboptions include:

a) After separation from the slurry, powdered coal
may be used as feed stock for low-Btu gas plants in areas where
water for the gasification is available, or for synthetic natural

gas plants or ammonia plants.

b) The alcohols may be returned via a second pipe laid
alongside the main line, to the head of the pipeline. The
return line for methanol needs only a fifth or a sixth of the

capacity that would be required for a water slurry.

c) The alcohols may be marketed as fuel-grade methanol
for stationary engines. The market could include natural gas
supplement, replacement for propane or butane, gas turbine fuel,
additive to gasoline fuel, or be used direcﬁly as fuel in
engines for automotive and industrial applications. ‘

d) The alcohols may be marketed as vehicular fuel.
If one looks ahead to the next century when petroleum
can no longer supply most of the vehicular fuel, there appear to
be two preeminent candidates for liquid, vehicular (ultimate)
fuels: methanol and hydrogen. Of course there are many problems
and obstacles to the adoption of either of these, which means
that a great deal of research and development will be necessary
to bring either concept to fruition. In the near term, the use
of methanol in the pipeline offers the opportunity to find early
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answers to many of the questioné relative to ifs potential as the
ultimate vehicular fuel. That is, the principal objectives of

" the two R&D programs can be accomplished by funding only the
smaller, more immediate of the two. Moreover, if a methanol pipe-
line is built, it would constitute a part of the demonstration

program for the ultimate fuel.

e) The alcohols separated from slurry may be further
separated into the basic constituents for subsequent marketing,

including methanol, ethanol, n-propanol, and i-butanol.

3. The slurry can potentiallyv be used directly aé pipe-
line fuel. If it were feasible to burn the slurry in a gas tur-
bine with a bottoming engine, the overall efficiency of the
pumping process would then be anproximately 50% greater than
that of the electrically driven prime movers. The direct use
of the slurry as prime mover fuel would render the slurry pipe-
line the most energy efficient of all coal transportation modes
insofar as the consumption of mechanical energy of movement is
concerned. When these two factors are combined in a system
design and subjected to economic analysis, it may well be that
the methanol-coal slurry is overall the most energy efficient

mode of long-distance coal transport.

3.3.3 Problems and Limitétions

It is récognized that there are several potential
problem areas associated with this program. Three particularly
sensitive questions associated with methanol-coal slurries will

be discussed.

a) Engine fuel unknowns. Although the use of the

slurry as boiler fuel does not appear to present any fundamental
difficulties, the actual demonstration remains to be done. Its
use in reciprocating engines may-not be practicable because of
the inherent problems of burning coal in ‘these engines. Use of

the slurrxy in open cycle gas turbines appears somewhat more
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promising but raises obvious questions regarding corrosion and
erosion effects on turbine hot end components resulting from

the coal constituent of the fuel. The problems of burning meth-
anol-coal slurry and pulverized coal in gas turbines are addressed
in another recommended program resulting from the initial study.
It is important to reéognize that even if the slurry cannot be

burned directly as fuel, the concept is not necessarily invalidated.

b) Safety. Because the flammability of methanol-
.coal slurry is far greater than that of water-coal slurry, the
safety implications of this new application must be examined.
However, since the flammability of the methanol-coal is still
much less than that of other pipeline fluids, it seems clear

that safety considerations could not invalidate the concept.

c) Environmental impact. The environmental dis-

ruption resulting from a methanol-coal slurry pipeline spill is
almost certain to be more undesirable than that from a coal-
water slurry. Although‘this is unlikely to be a decisive nega-
tive factor considering that other flammable fluids are moved

extensively by pipeline, the impact must nevertheless be examined.

d) Rheology of methanol-coal slurries. The very

brief experimeﬁtal work which was performed as part of this study
yielded very encouraging results. However, they are far from

conclusive, and the rheology of the slurry requires further work.
The processes of coal communition and slurrification also require

experimental exploration.

3.4 Slurry-fired and Coal-fired Engines

It is recommended that study and experimental work be
conducted to assess the potential for operating gas turbines on
methanol-coal slurry and on pulverized coal separated from the
slurry. The program should supplement previous investigations
of hot corrosion and erosion in turbines and should include
work to identify the fouling mechanism, means of inhibiting the

fouling and approaches.
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As is discussed in Section 6.0 below, the conversion and
use of coal has high priority in the President's National Energy
Plan. Several large demonstration projects for converting coal
to clean fuels are under way. Coal utilization programs are
directed toward development of processes to permit increased
use of coal by direct combustion, with the objective of develop-
ing and demonstrating on a commercial scale the direct combus-
tion of high sulfur coal without exceeding pollution standards.
These processes are fluidized bed combustors contéining sulfur
" oxide sorbents. While the coal conversion and utilization pro-
jects in ERDA's Fossil Energy program have potential benefits
in the overall spectrum of power generation, there are alterna-
tive approaches which could have significant benefits more
direétly related to the pipeline industry. One of these involves
the direct utilization of pulverized coal in liquid pipeline
drivers with the coal brought to the pumping station in the form
of slurries. Section 3.3 above presented a recommendation for
a study and demonstration program on a methanol-coal slurry
pipeline, pointing out as one of the advantages the possible
use of the slurry as a fuel in gas turbine drivers for pipeline

pumps.

The problems involved in burning pulverized coal in gas
turbines are discussed in Section 6.1.1.2 below. Mention was
made also of a recent investigation at Solar Division of inter-
national Harvester to identify the hot corrosion and erosion
problems of a gas turbine burning coal in a fluidized bed com-
bustor, and of an ERDA-sponsored program at Curtiss-Wright to
demonstrate the feasibility of a gas turbine to burn high sulfur

coal economically in utility service.

The work at Solar has indicated fouling, resulting from
volitalization of fly ash at temperatures above about 470°C, to
be the principal deterrent to the use of coal-fired gas turbines,

although erosion may also become significant in the lower tem-
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perature turbine stages. It was concluded that further work to
2improve the potential of operating gas turbines on coal must
identify the principal contributor to the fouling mechanism,
and then investigate strategies for mitigating the ash deposits.
A continuation of the work is recommended in view of its poten-

tial benefits for pipelines as well as maﬁy other applications.

The investigation of methanol-coal slurry as a fuel for
open cycle gas turbines would provide a very useful supplemént
to the methanol-coal pipeline study recommended in Section 3.3
abové. As discussed in Section 5.3.2 below, it has already
been demonstrated that methanol has excellent characteristics as
a gas turbine fuel. One approach in a methanol-coal pipeline
vmight therefore be to separate the coal from the slurry and use
plain methanol as fuel. A far more desirable approach, however,
would be to use the methanol-coal slurry directly as fuel. This

latter approach remains to be investigated.

It is anticipated that the objectives of this program could
be largely accomplished through an analytical study, followed
by laboratory rig tests and then a controlled laboratory test
on a gas turbine engine of a suitable size and type for liquid
pipeline use. If the results are favorable, the demonstration
phase could be accomplished in conjunction with the methanol-
coal slurry pipeline demonstration recommended in Section 3.3

above.

3.5 Fuel Cell Pump Station

It is recommended that a study and demonstration be
conducted of fuel cell power sources in combination with DC
motors in a liquid pipeline pump station. The pipeline applica-
tion offers a unique and extremely attractive application for

fuel cell power plants for three reasons.

First, the use of DC motors in the pipeline application
would avoid the need for inverters to convert the fuel cell out-
put to AC. Freed of this burden, the economics of the pipeline

application for fuel cells becomes much more attractive than

3-21
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that of the electric utility application. Second, the nature

of petroleum products pipeline operation is such that the use

of DC motors in and of itself would enable an energy saving on

the order of 5-10%. The fuel cell, of course, offers the oppor-
tunity to realize that improvement. Third, the potential efficiecy
of the fuel cells is much higher than that of the generating and

transmission systems which currently supply pipeline pumping power.

The cambination of these factors indicates that the
pipeline is the preferred application for early commercialization
of the fuel cell. Accordingly, it is recommended that contin-
uing ERDA fuel cell programs be reconsidered in this light.

Fuel cells have some unique characteristics which make
them attractive for power generation. As discussed in Section
4.4.2, these include high efficiency at all ratings, 25 kw and
above; good part-load efficiency; low noise, thermal, and chemi-
cal pollution; and considerable freedom in site selection. Waste
heat recovery potential is another advantage which can be exploited
in some sites for such thermal uses as process heat/steam absorp-
tion chillers, space heating, and water heating. Second genera- '
tion fuel cells of the high temperaturé type, which are targeted
for commercial introduction in the mid-1980's, may lend themselves
to utilizaiton of -waste heat in the form of bottoming cycles

which can further enhance overall plant efficiency.

The primary problems associated with fuel cells, as indi-
cated in Section 4.4.3, are cost and durability. Expensive
electrocatalysts are required in the fuel cell stacks. Fuel .pro-
cessing equipment is complex and expensive, and subject to de-
gradation with fuels which contain any contaminants. Inverters,
which are required to convert fuel cell system output from DC

~ to AC, are also expensive and do not yet exist in the sizes

needed for large-scale power conversion. While the feasibility
of attaining high efficiencies in medium to large size fuel
cell power plants has been proved, extensive engineering devel-
opment and demonstration remain to be done before economics,

reliability, and durability are established.
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Fuel cell development status is discussed in Section 4.4.4
below. The majof development effort at present is being directed
toward first generation fuel cell power plants, which are tar-
geted for commercial introduction in 1980. These will be low-
temperature systems of the phosphoric acid type with a heat
rate of 9000-9300 Btu/kwh (36.7-37.8 thermal efficiency) and a
projected capital cost (in 1975 dollars) of $250/kw if produced
in meaningful gquantities.

The major program around which the first generation effort
is centered is the FCG-1 program, which is being accomplished

by scaling up from kilowatts to megawatts in steps: (a) a 1-MW

pilot plant, (b) a 4.8 MW demonstration plant, and (c)26 MW

demonstration plants, all to precede the manufacture of 26 MW
FCG-1 power plants on a production basis. The 1-MW pilot plant
has been built and tested successfully. The 4.8-MW demonstration
plant is under contract, jointly funded by ERDA ($25 million),
the Electric Power Research Institute (EPRI) ($5 million), and
United Technologies Corp. ($12 million). Delivery is scheduled
for mid-1978 and testing by early 1979.

Concurrent with the FCG-1 program, another major effort,
called the RP1l14 program is under way, intended to broaden the
application of fuel cells beyond near-term needs to result in a
second generation'power plant for the utility industry to be
used in a wide variety of applications. Major goals for the
second generation include commercial introduction by 1985, cap-
ital cost of $200/kw and a heat rate of 7300-7500 Btu/kwh (ther-
mal efficiency 45.5-46.8%) using natural gas and clean liquid
fuels. The second generation fuel cells will probably use molten
carbonate electrolyte and operate at relatively high tempera-
tures (500-7000C),

Pipeline application of fuel cells is discussed in Section
4.3.6 below, where it is identified as an attractive R&D oppor-
tunity. From analysis of duty cycles in product pipelines, it

is seen that, depending .on the characteristics of the pipeline




nRTovaeco

and of the product being moved, throttling may be necessary at
both maximum flow and a number of intermediate flows below the
maximum. These throttling losses could be avoided if an econ-

omical, efficient, variable-speed motor were available.

The principal conclusion which emerges from the analysis
just described is that the pipeline application is much more
attractive for demonstration of megawatt-scale fuel cells than
the electric utility application. There are two principal
reasons for this. First, in the utility application, it is neces-
sary to provide inverters because utility systems in this coun-
try all operate on 60-cycle AC, whereas pipeline pumps can be
driven by DC motors. These inverters do not yet exist, so the
requirement for them constitutes a heav§ additional burden on

- the fuel cell development. Moreover, the inverters, when

developed, are certain to be expensive, possibly costing as
much as the fuel cell itself. Thus, fuel cells for the utility
application will always be more expensive than for the pipe-

line applications.

Second, the amenability of the pipeline to DC motors also
offers an energy savihg of the order of 5-10% in and of itself
by avoidance of the throttling action described above. An
accurate, quantitative analysis to yield an estimate of energy
wasted in the pipeline industry through such throttling would
require writing a computer program with extensive input data
from the various.pipelines. Such detailed study is clearly
impractical under the scope of the presen£ .investigation and
in fact is unnecessary. However, an approximation, derived
from the fuel and power costs of the 105 interstate pipeline
companies (see Fig. 4.3-3 of Report R-3022 of this series)
indicates a total wastage of about $10 million annually. This
order of potential saving is clearly enough to justify an R&D

program of several million dollars.

Another attraction of fuel cells for pipeline applications

P=3

lies in the comparative efficiency of fuel cell power plants vs
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electric utility power. The latter seldom reaches 25% after all
power generation and transmission losses are taken into account.
If the expected fuel cell efficiencies (up to 47% in second
generation plants) are realized in commercial applications,

ﬁhe net efficiency of the fuel cell power source, even after

‘deducting losses in conversion and transport of fuel, will still

far exceed that of the electric utility power source.

It is not suggested that the ready adaptability of fuel
cell-DC motors to pipeline applications is an established con-
clusion. Achievement of the goals set forth for large fuel
cell power plants in the near term, particularly those related
to cost and'durability, will be a difficult and costly task. 1In
addition, the availability of DC motors which will meet the pipe-
lines' requirement of long, unattended, maintenance-free opera-
tion, must be recognized as a problem area which may require a
significant feseardh and development effort to resolve. How-
ever, the potential that clearly exists for significant energy
saving justifies a strong recommendation that further work be
done to define an appropriate R&D program for the application

of fuel cells in pipeline service.

3.6 Indirect-fired Coal Burning Combined Cycle Pump Station

_ It is recommended that a study and demonstration be
conducted on a high efficiency indirect-fired gas turbine with
Rankine bottoming cycle, using pulverized coal fuel. The pro-
gram should capitalize on existing technology in closed Brayton
cycle engines which have operated successfully on coal in
Europe, but at relatively low efficiency because of limited
cycle temperatures. Effort should be concentrated on achieving
substantial increases in efficiency through the use of advanced
high-temperature materials in the air heater and the addition
of an organic Rankine bottoming system. The program is further

discussed in Section 6.1.1.2 below.
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Development of closed Brayton cycle systems first began
in 1939. The first power plant of this type was an oil burning
plant manufactured by Escher-Wyss in Switzerland, and was
placed in service in 1940. The first coal burning, closed
Brayton system was an Escher-Wyss 2300-kw power plant, commis-
sioned in 1956 in Germany, and this plant had accumulated
120,000 hours by June 1976. Altogether, some 14 plants ranging
in size from 2 to 50 MW have been built in Europe, Great Britain,
Russia, and Japan. A number of these plants, including several
which use coal as fuel, have accumulated over 100,000 hours of
operation. Turbine inlet temperatures have ranged from 650 to
750°C and plant efficiencies have been in the general range of

25 to 32%.

Although these closed cycle plants have demonstrated
economic viability, utilities have been reluctant to install
them on a broad basis, primarily, it would seem, because of
the hitherto wide availability of clean fuel whose combustion
gas can be passed directly through the turbine. With the
present emphasis upon use of coal and with the advent in recent
years of high-temperature ceramic materials, these plants

deserve further exploration.

By using new high-temperature materials, such as silicon
nitride, silicon carbide, or other ceramics in the heat ex-
changer, it may be feasible to increase turbine inlet tempera-
tures by several hundred degrees and thereby increase the over-
all thermal efficiency by a substantial amount. The addition
of a Rankine bottomi%g system using waste heat from the air
heater would result in a further increase in the overall
plant efficiency. It is estimated that with a turbine inlet
temperature of 1000°C (which should be feasible with ceramic
materials in the air heater) and an organic Rankine bottoming

cycle, an overall efficiency of over 40% can be achieved in a



plant of 2-MW capacity or higher. Another advantage of ceramic
~ materials would be increased resistance to erosion and corrosion

effects from combustion of pulverized coal.

This program is recommended indepenaent of the program on
methanol-coal-slurry fired and coal-fired engines described in
Section 3.4, although they are complementary. With the strong
emphasis on coal in the Nation's energy plan, it is important

“that other options be explored for possible use in the event
that practical solutions are not developed for coal-burning,

open cycle gas turbines.

Aside from problem areas associated with the organic Ran-
kine bottoming cycle, which would be as described in Section 3.1,
the principal risk in the indirect fired gas turbine would
appear to lie in the air heater. The application of ceramics
in this stationary heat exchanger should be less of a problem
than in the hot parts of a gas turbine (nozzles and particularly
the rotary parts), such as are being pursued by several of the
leading turbine manufacturers. However, there are potential
problems, such as differential expansion between the metal hous-
ing and ceramic core and possible fouling of the air heater sur-
faces from slag, which will require careful design and develop-

ment to overcome.

3.7 1Interpal Coatings in Pipelines

It is recommended that a program be conducted of
analysis, experiments, testa, and demonstrations of internal
coatings in both gas and liquid pipelines to determine with
good precision their enhancement of flow efficiencies, to demon-
stratc their longevity, and to assess the economic potential
of their further use in liquid pipelines. The program should
begin with analysis and testing to establish the longevity
and dependability of present commercial coatings which are
applied in place, followed by research and development
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if necessary, and a demonstration in a full station-to-

station section of an operating pipeline.

Results of tests and applications over the past 30 years
have proved that internal coating of pipelines is an effective
method of increasing pipeline flow efficiency. 1In addition to
increased throughput, internal coatings provide other advantages
inéluding: protection against corrosion; reduced cost of scrub-
bers, strainers, pigs, and other types of pipeline cleaning
equipment; prevention of contamination from corrosive products;
reduced maintenance and labor costs; protection of pipe interiors
against accumulation of foreign materials; and reduction of

leakage.

Epoxy-type internal pipe coatings are currently being used
in pipe for transmitting dehydrated natural gas, wet gas, crude
0il, sour crude o0il, salt water, fresh water, and petroleum pro-
ducts. Thousands of miles of internally coated pipelines are

in service, with pipe sizes ranging from 2 to 42 inches.

There are two principal methods of application that have been
used for internal coatings: in-place,or in situ, and spraying.
In situ coating is applied to lines already laid, thereby avoid-
ing the welding problem, i.e., the burnoff of the coating that
occurs at the joints when new sections of pipe are welded to-
gether. Spfay application of internal coatings is accomplished
on individual sections of pipe at the pipe mill with appro-
priately formulated epoxy type coatings folloWipg sound surface

preparation such as abrasive blasting or acid cleaning.

When epoxy type internal coatings were first used in the
late 1940's and 1950's, problems were encountered with obtain-
ing good adherance of the coating to the pipe wall, with the
result that the coating would sometimes peel off in sheets and
clog the filters, scrubbers, regulators, and other equipment
in the line. Manufacturers and applicators claim that this

problem has been overcome by better surface preparation of the
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pipe. However, interviews with a number of pipeline operators
were conductéd as a part of this study, and it was found that
considerable skepticism still exists as to whether a pipe can
be sufficiently well cleaned in place to ensure perfect reten-
tion of the coating. This, of course, is precisely the kind of
situation which ERDA R,D, &D programs are inténded to address.

Current practice is generally to spray the pipe sections
at the mill prior to laying the pipe, as it is less expensive
and more reliable than in-place coating. The main drawback, as
mentioned above, is that several inches of coating are burned
off at the joints when the pipe sections are welded. 1In the
case of wet gas lines or liquid lines, field cleaning or repair
at the weld joint is usually necessary to prevent accelerated
corrosion. Thus, much of the benefit of the coating as a fric-
tion reducer is lost, since the insides of the joints are the
principal flow inhibitors. Also, the benefits of corrosion
protection and leak stopping, which are most needed at the
welds, are also lost. Thus, what is needed is a scientifically
plahned and well conducted demonstration program, in an actual,
operating pipeline, to show that in-place coatings can in fact
~equal the durability of the mill-spray coatings, while overcom-
ing the limitations and shortcomings of the former. Accordingly,

a program of R,D,&D is recommended.

3.8 Additivee to Reduce Viscosity

It is recommended that a program of analysis, experi-
ments, tests, and demonstrations of viscosity,- reducing addi-

tives be conducted.

(1) ©oystem ctudies and simulations should be performed.
The operating problems and penalties must be identified, and
their costs estimated. Additional capital equipment require-
ments must be identified, and similations conducted to assess

the economics of drag-reducing additives.
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(2) A facility should be found or established for evaluat-
ing and comparing performance ¢of additives, and the analytical

results of step (1) above should be confirmed.

(3) A demonstration program should be conducted on an

actual, operating pipeline.

The quéstion of scaling from laboratory to field eguipment
is important because the tendency is for reductions in drag to
be much smaller percentagewise in field-size eqhipment than in
laboratory-scale systems (Savins 1976). However, the problem
has been addressed (Savins 1976) and those investigators at
least now feel that scaling in fact no longer constitutes a
problem (Savins 1977). With this recent progress, existing
facilities, e.g., University of Tulsa, are adequate for step 2
above. Thereafter the program could move directly into field

demonstration in an operating pipeline.

This program offers éeveral‘attractions. First, because
the technology is near, it can be brought to fruition quickly.
Second, the liquid pipeline companies are suffering the effects
of rising power costs now, as opposed to gas pipelines whose
fuel costs are artificially regulated to very low levels, so
that the economic incentives exist. Third, by virtue of both
of these considerations, it should be possible to arrange for
substantial cost sharing by the industry. Thus, it appears
that an opportunity may exist to realize a significant saving
qguickly and with minimal investment of ERDA funds. Accordingly,

it is strongly recommended that this program be rapidly pursued.
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4.0 POWER CONVERSION IMPROVEMENTS

The majority of the drivers, or prime movers, in gas
pipeline service are reciprocating, spark—ignited, i.e., Otto-
cycle gas engines, fueled by natural gas from the pipeline.
Prior to the Arab oil embargo, turbines had been entering ser-
vice in increasing numbers, primarily because their lower main-
tenance was able to offset the higher efficiency of the recip-
rocators. In recent years, with the continued risé in gas
prices, the turbines were the first to be taken out of service
on those lines whose throughput has been declining. In an
effort to reverse this trend, turbine manufacturers have initiated
R&D programs to improve turbine efficiency. As will be dis-
cussed later, two such improvements appear to offer a highly

promising opportunity, yet appear to be beyond the development
ment reach of industry.

Almost all prime movers on liquid pipelines are electric
motors. As will be seen, there do not appear to be any attrac-

tive energy conservation opportunities in motor improvements.

4.1 Heat Engine Improvements

There are of course many small ways to improve the
efficiency of heat engines. The engine manufacturers are well
aware of these potential improvements but do not incorporate
them because they are not cost-effective under the existing
fuel price structure. As fuel prices rise, more and more of
. these small improvements will be introduced. However, small
improvements already under development by industry do not
appear to offer attractive opportunities for ERDA-sponsored
R&D. For the larger imp;ovements which would justify ERDA-
sponsored R&D, i.e., Step function improvements in importance,
it is necessary to address the basic thermodynamic cycle, as
opposed to small improvements in the hardware. Such basic
cycle improvements are discussed below for the three principal

engine types, i.e., Brayton, Otto, and diesel.




4.1.1 Brayton Engine Improvements

The use of Brayton engines as gas turbines in
gas pipelines has increased siénificantly in recent years. 1In
particular, the two-shaft gas turbine driving a centrifugal
compressor has gained increasing acceptance in the gas pipeline

"industry, for several good reasons.

(1) The gas turbine's natural characteristics match
those of the centrifugal compressor. With the free power tur-
bine coupled directly to the compressor load, both the turbine
and the compressor have basically the same power to speed
characteristics (see Fig. 4.1.1-1). The power absorbed by the
‘centrifugal compressor varies approximately as the cube of the
speed, and the output of the power turbine at best efficiency
also varies essentially as the cube of the power turbine speed.
The gas turbine and the centrifugal compressor can therefore
operate at the same speed, thereby avoiding any necessity for
reduction gearing and other compliéations. The normal pipeline
operating line goes through the high efficiency points of the
gas turbine (Fig. 4.1.1-2).

(2) The gas turbine has achieved a high degree of relia-
bility-availability, longevity, and low maintenance. A con-
tinuing study by one of the major producers of industrial gas
turbines in high use factor service has shown an average relia-
bility of 99.5% and availability of 97.4%. A significant per-
centage of the units in sérvice have accumulated over 60,000
hours of operation and several units have surpassed 100,000
hours of operation. Reliability and availability in this

instance are defined as follows:

Reliability = installed hours less unsched.outage

installed hours x 100%
Availability = installed hrs.less (sched.& unsched.outage) yg0g

installed hours
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(3) The average cost per installed horsepower of the gas
turbine compressor has proved to be significantly lower than
that of comparable reciprocating type units. For example, in
1973, cost statements filed with the Federal Power Commission
by 35 pipeline companies covering installation of 503,163 com-
pressor horsepower (54% of which were gas turbine driven) showed
an avérage cost per installed horsepower of $219 for gas tur-
bine units as compared with $295 per installed horsepower for

reciprocating units. (Cas Turbine Intern'l, Jul-Aug'74)

The major disadvantage of the gas turbine as compared
with the reciprocating engines used in gas pipelines is its
higher fuel consumption. This, of course, is becoming a matter
of increasing importance as the cost of fuel rapidly escalates.
As a result, gas transmission companies as well as gas turbine
manufacturers have been investigating ways of decreasing fuel
consumption through modification of existing gas turbine in-

stallations and in applying gas turbines to new installations.

Advances in technology of simple cycle gas turbines have
resulted in marked improvement in efficiency, with some of the
newer industrial types approaching 30% overall thermal effi-
ciency. However, with the cost of gas fuel increasing more
rapidly than efficiency improvements in the simple cycle
- machines, it has become necessary to consider other approaches.
The two foremost approaches for effecting major improvements
in fuel economy are the use of regeneration, and the addition
of a Rankine cycle bottoming plant to either simple cycle or
regenerative cycle gas turbine power plants.

4,1.1.1 Regenerative Cycles

Figure 4.1.1.1-1 is a schematic repre-
sentation of a regenerative cycle gas turbine power plant. The
regenerator, which in the case of an industrial type gas tur-

bine is a stationary heat exchanger (or recuperator), takes
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heat from the gas turbine exhaust and transfers this heat to
the compressor discharge air before it enters the combustion
chamber. : o

The use of regeneration is limited to gas turbine engines
with moderately low pressure ratios. For a typical industrial
gas turbine, a regenerator would be completely useless at pres-
sure ratios of 14 or higher because the compressor discharge
temperature is so high that it is equal to the exhaust tempera-
ture and therefore there is no chance for regeneration. The
effect can be seen in Fig. 4.1.1.1-2. 1In most cases a pres-—
sure ratio of 6 to 8 represents a good compromise for both
simple and regenerative cycle gas turbines, considering both
fuel cost and installed first cost.

Addition of a regenerator of 80% effectiveness to a simple
cycle two-shaft gas turbine increases thermal efficiency at
full load by approximately 30%. Regenerators with an effective-
ness of approximately 8l% have been used with gas turbines for
some years. Higher efficiencies can be achieved by adding
more heat exchange surface to the regenerator, but only at the
expense of considerable added bulk, weight, and cost. Figure
4.1.1.1-3 shows tﬁe ef fect of regenerator effectiveness on
thermal efficiency and cost. When effectiveness is increased
from 81 to 85%, the heat exchange surface must incfease approx-
imately 50%, and the additional regenerator surface costs
about $150,000. Analysis shows that for fuel costs between
$.50 and $1.00 per million BTU, the 81% is optimum. When fuel
values reach $1.00 to $1.50 per millioﬁ BTU, an effectiveness

of 85% would be economical. (Beard, '76)"

4.1.1.2 Brayton-Rankine Combined Cycles

Figure 4.1.1.2-1 illustrates a com-
bined cycle power plant in which a Rankine cycle system is

added as a bottoming plant to a simple cycle gas turbine.
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Exhaust heat from the gas turbine goes to a heat recovery boiler
where vapor is generated and used to drive a turbine which is
connected to the load. Exhaust from the vapor turbine is con-
densed and pumped back to the boiler to form a closed loop sys-
tem. The single drive arrangement shown, with the vapor turbine
directly connected to the outboard end of the load, is advanta-
geous in a pipeline application, since.the vapor turbine can be
designed with an output speed to match the compressor and power
output stage of the gas turbine. The gas turbine can also fur-
nish the necessary speed control for both units under most con-

ditions.

The number of coﬁbined cycle power plants installed to
date is somewhat limited, and for the most part confined to
large sizes .in electric utility service. As far as this study
could determine, only two plants of less than 15,000 KW capacity
are in service in municipal utilities. The majority of the
combined cycle plants in electric utilities are of the supple-
mental fired heat recovery type in which exhaust heat from the
gas turbine is supplemented by separately fired burners in

supplying heat to the boiler.

As for gas pipeline service, there are only four combined
cycle systems known to be in operation. These systems were
installed between 1968 and 1970, and are reported .to be operat-
ing successfully; however, with recent advances in technnlagy,
it is apparent that system efficiencies can be increased

considerably.

The combined cycle system of most interest for pipeline
service utilizes a simple cycle, two-shaft gas turbine exhaust-
ing its heat to an unfired heat recovery boiler. Studies by the
General FElectric Co. (Hecard,'75) have indicated that such a systen,
using a standard 14,600 hp gas turbine and a steam turbine
connected directly to :a centrifugal compressor, can_produce a
combined output of 22,000 hp at ISO conditions with an overall
thermal efficiency of approximately ?9.2%. |

4-11
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Figure 4.1.1.2-2 (Heard,'75) shows estimated thermal efficien-
cies at various ambient temperatures for the above combined cycle
system using water as the working fluid. Steady state conditions"
typical of normal pipeline compressor operation were assumed.
Thermal efficiency curves for a standard regenerative cycle
~gas turbine are shown for comparison. Two features of particu-

lar interest can be noted from these curves.

(1) The effect of varying ambient temperatures. At increa-
ing ambients, the standard gas turbine efficiencies decrease

significantly. For the combined cycle, however, the

efficiencies increase at higher ambient temperatures. At the
100% flow point and 59°F, the combined cycle efficiency
(39.2%) is approximately 15% higher than that of the standard

regenerative gas turbine (34%).

(2) Part-load characteristics. The efficiency of the
combined cycle plant decreases at a markedly higher rate at
partial flows than that of the regenerative cycle plant. For
example, at 85% rated flow and 59°F (a condition which reqdires
55% of the ISO rated horsepower), the combined cycle efficiency
drops tb 32% as compared to 30% for the regenerative cycle
turbine. This would indicate that the combined cycle plant is
utilized to its best advantage when operating at high load

factors.

Solar Division of International Harvester Co, is actively
investigating combined cycle power plants utilizing their in-
dustrial gas turbines in the 1200-10,000 hp range and expects
to have initial field evaluation units in the 1978-79 era.
Their studies have indicated that a combined cycle system for
small gas turbines would be noncompetitive in initial cost,
performance, and operating characteristics if it were designed
around commercially available steam furbines, boilers, conden-

sers, and related equipment. Accordingly, they are undertaking
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the design and development of several major system components,
described in a paper by Solar (Wardell et al.,'76). They include:

(1) A once-through boiler, in which heating, boiling, and
superheating take place in one tube. Steam drums are not used
and feed water flows are controlled as a function of output

steam conditions.

(2) A new steam turbine having a projected efficiency of.
80%. This compares with 66% in the best available commercial
turbines. The new turbine concept is a 2-stage type with the
high pressure unit running 66,000 rpm geared to a low pressure
unit running at approximately 15,000 rpm, the séme speed as

the gas turbine drive.

(3) New condensers of bbth water-cooled and air-cooled

type.

Utilizing these new components, Solar is projecting com-.
bined cycle‘power plants having thermal efficiencies ranging
from 34.9% for the Saturn engine to 41.8% for the new Mars
engine which is currently being developed. The engines cover
a horsepower range from 1160 to 10,300 in the simple cycle
versioné, and in the combined cycle versions will cover a range
of 1824 to 13,790 hp. The performance of the combined cycle
power plants represents an increase in ISO hp from 34-57% and

an improvement in fuel consumption of 25-38%.

The use of organic working fluids in the Rankine bottoming
cycle offers potential for further improvement in efficiency
of combined cycle power plants. Although all combined cycle
plants constructed to date have used water as the working
fluid, studies by Thermo Electron Corp. (Morgan et al.,'74)
have indicated possible achievement.of over 43% thermal effi-
ciency in a simple cycle gas turbine/organic Rankine cycle '
bottoming plant, and over 47% in a recuperated version
of this plant. These studies are based on the use of
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current technology gas turbine engines in large power sizes
(over 60,000 kw). Other advantages of organic working fluids
are low freézing temperature and possible reduction in size and
weight, depéending on the working fluid used. There are dis-
advantages in organic fluids as well, in thét many of those
that are readily available are flammable or toxic and all are
subject £o decomposition at moderately high temperatures such
as might occur in exhaust heat recovery boilers. Nevertheless,
there appears to be enough potential to‘warfant further irves-

tigation of organic fluids in combined cycle power plants.

4.1.1.3 Comparison of Gas Turbine Cycles

The decision to select a simple
cycle, regenerative cycle, or combined cycle turbine power
plant is sensitive to the duty cycle under which the plant will
operate, the installed first cost of the equipment, the fuel
cost, and the operating environment. With the rapid increase
in fuel cost, the 25-28% thermal efficiency~of the typical
preéent simple cycle gas turbine is probably not high enoucgh
to make this power plant compefitive with the other plants

in the future.

As mentioned préviouSly, the combined cycle power plant
has a decided advantage in efficiency at the higher ambient
temperatures. This would be an important factor to consider

in selecting a plant to operate in a hot climate,

On the other hand, if the plant were required to operate

.a large part of the time at low load, the regenerativé cycle

turbine would appear to be more advantageous since the rate of
increase in specific fuel consumption at part loads is less.
This is illustrated in Fig. 4.1.1.3-1, which shows part load
characteristics of typical gas turbine engines in simple cycle,
regenerative cycle, and combined cycle versions of the type

used in pipeline service. « ‘ :
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To compare these three cycles in a guantitative, precise
way, detailed simulations were performed using the pipeline
economic model (PEM) previously developed under Task 1 and
described in Reports 3021 and 3069. The model was also intfo-
duced in Report 3024, Section 7.1. The model is a simulator

which accepts as input the ‘design characteristics of the pipe-

"line, the operéting and capital costs, and a market (throughput)

projection. Its output is the detailed financial and energy

consumption history over the life of the project.

The reference pipeline used in the comparison studies was
designed by Pipetech and was based on earlier system designs
from the Pipetech files. Some of these designs were actually
built, and thus the reference designs for this study represent
typical, realistic situations. The costs, derived by adjust-
ing actual system costs, are therefore highly accurate in terms

of this study. The PEM consists of two major submodels: a

- fluidics submodel and a financial projection submodel. The

gas dynamics of the line are calculated using a (proprietary)
model previously developed by Pipetech and used by them in

the design of actual pipelines. It is therefore more than
sufficiently accurate for this study. Figure 4.1.1.3-2 dis-
plays a typical output from the gas dynamics model. The
financial projection model is an adaptation of a business pro-
jection model previously developed by S3, modified to reason-
ably simulate pipeline operation, and bench marked against a
highly detailed pipeline-peculiar (proprietary) financial
model previously developed by Pipetech.

The reference gas pipeline was designed - -and costed on the
basis of reciprocating gas engines, since that approach repre-
sents the best current practice. An installation schedule
was prepared for that system, detailiﬁg the points in project
life at which additional capacities must be installed. A

survey of representative gas turbines was then made, and is
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R-3025

presented in Table 4.1.1.3-1. The reference system was then
converted from reciprocators to simple-cycle and combined-
cycle turbines, as shown in Tables 4.1.1.3-2 and 4.1.1.3-3, .
respectively. The heat rates were then adjusted from the full-
load values to those associated with the actual operating
horsepowers required, using the part-load characteristics from
Fig. 4.1.1.3-1.

For purposes of the comparison, the simple cycle is re-
garded as the baseline. The output from the economic model
for this case is shown in Fig. 4.1.1.3-3. Figure 4.1.1.3-4
presents the output for the combined cycle. For the compari-
son, the total costs are taken to be equal for both cases.
Thus, the question being asked of the model is, if these
improved cycle engines could be installed and operated at the
same cost as the simple cycle, what would be the benefit?

With this information, it is possible to calculate the oper-
ator's incentive in energy and dollar savings to adopt the in-
novations. It is noted that although the total costs input
for the two cases are the same, the capital infusion rates are
different, reflecting the differences in timing for capacity
additions. Some of the more important'inputs and assumptions
are listed in Table 4.1.1.3-4. . Table 4.1.1.3-5 preéents some

significant figures, extracted from the two outputs.

Several points of interest are evident. First, from
lines 1 through 4, it is seen that the energy saving actually
realized for the assumed duty cycle (which is determined by
the assumed market growth and the power increments necessary
to meet it), though reduced somewhat from the full-load values,
is still very large. Second, from the viewpoint of economy,
the 20;year present value of energy saved would be $26.8 million
for the combined cycle. 1In terms of prime mover capacity,
this latter figure represents $514 per horsepower for the par-

ticular set of assumptions used, which is almost twice the

4-20



Table 4.1.1.3-1

R-3025

REPRESENTATIVE GAS TURBINES
IN GAS PIPELINE COMPRESSOR SERVICE

Simple Cycle

Regenerative

Cycle

(Estimated)2
Combined Cycle

HP (IS0O) SFC

HP (ISO) SFC

HP (ISO) SFC

Manufacturer Model No. Rating BTU/HP-hr Rating BTU/HP-hr Rating BTU/HP-hr
Solar Saturn 1160 11600 1100 9510 1804 7284
Solar Centaur 3830 9600 3580l 8100} .. 5600 6578
Solar Centaur3 4850 9100 4540 7460 7090 6288
Solar Mars3 10300 8080 9630 6625 13680 6080
Allison 501K5 2745 11070 2600 9080 4120 7370
Allison 5S01K13 3165 . 9980 3000 8180 4750 ‘ 6650
Cooper- RT25(GG12) 2750 13800 2600 11315 4125 9190
Bessemer (P&W) . .

Cooper- COB125 12500 9800 11875 8035 ‘18750 6525
Bessemer (Avon)

(Rolls Royce)

DeLaval Turbopac 3300 11600 3130, 9510 4950 7725
Ingersocll GT40/22 4250 - 9430 4040 7730 §375 6280
Rand

General Frame 3 6850 11000 68501 9000t 9800 7690
Electric (Mod. 3000) ’
General M3872 8780 10850 8750 9000 13125 7225
Electric

General M3102 10800 10190 10800 9000 16200 6785
Electric

General M3132 13100 9760 13100 9000 19650 6500,
Electric - |
Orenda OT370 8090 11800 R200 9675 13325 7860
Orenda OT-F-270 9830 11550 9070l _7770l 14745 7690
1From mfr.'s published data; all other figures on regeneratlve cycle aréA

eqtlmates.'based on assumptions that regenerative cycle hp is 5% lower
and SFC is 18% lower than simple cycle.

Comblned ¢ycle hp fiygures represent increase of 33% to 55% over simple
cycle hp, depending on engine. Where published data are not available,
50% is assumed.

3Development.models
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Table 4.1.1.3-2

REFERENCE GAS SYSTEM CONVERSION
RECIPROCATORS TO SIMPLE-CYCLE TURBINES

Engine - TIHP

"Mars 10300
Cent-D 4850
Cent 3830 |
Cent-D 4850
Cent 3830
Cent-D 4850
Cent 3830
Cent-D 4850
Cent 3830
Cent-D 4850
Cent 3830
Cent-D 4850
Cent 3830

o

Yr..

TIHP

Engine

Mars 20600
Cent 8680
Cent-D B680
Cent 8680
Cent-D 8680
Cent 8680
Cent-D 8680
Cent 8680
Cent-D 8680
Cent 8680
Cent-D 8680
Saturn 6010
Saturn 4990

4-22.

R-3025

Rgmt.

Yr Engine TIHP
; > 20600 19415
14 Cent 12510 12075
14 Cent  12510| 11822
14 Cent 12510 11766
14 Cent 12510 11755
14 Cent 12510 11731
14 Cent 12510 11708
14 cént 12510| 11687
14 Cent 12510 11645
14 Cent 12510| 11587
14 Cent 12510 11518
> 6010 5770
16 Booster 5030 5028
156 ,740{147,507
el = 1.06237
i.e., 6.24%
excess
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Table 4.1.1.3-3

R-3025

REFERENCE GAS SYSTEM CONVERSION
RECIPROCATORS TO COMBINED-CYCLE TURBINES

Engine TIHP

Mars
Cent
Cent
Cent
dent

Same as St.

10

i

v
Cent-D

Cent

13680
5600
5600
5600
5600

2

3
2
3
2
3
0

7090

5600

v Yr. Engine TIHP
7 Cent-D 20770
12 Cent-D 12690
6  Cent-D 12690
12 Cent-D 12690
6  Cent-D 12690

—=> 12690
- e 12690
., 12690
— 12690
12690
12690
No further 7090
installatn. .
o " 5600
160,360
160,360
147,507
i.e.,

4-23

- RQMT.
19415
12075
11822
11766
11755
11731
11708
11687
11645
11587
11518

5028

147,500

= 1.0871,

B.71% excess
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LZ-v

g 4 ° ® ® ®
BASESL  INKED alfW suaSl YEINYR o & & VATL 101276 Paut - 37
, Ting PERIOD 1976 1977 1979 197y 1980 198) 19u2 1ybd
UIHER LINL JTEMS .
OPERAT(ON AND MAINTENANCE LXPENSES 000 62%2,Q000 6542.000 715%+000 1722900 937u.pou LEL LR Fopbey
INTEREST €XPENSES . «00U 10371 ebHu 1037648 103740648 1750445 V190 44) 86493ep40 8347
Tolar, EXPENSES +000 24825.7b7 260u1.20% 27227.135 2904744749 25629.%73 Ju565,598  3IIuSley
INUSELU Tax (0SS «0UY +000 +»Q0D0 VYo [AVIVEV] «COU LXVIVIVI (1Y}
UNUSED 1 nVESTHENT tTAt CREDITS JBIYel ) «0J0 s000 *0UU LXVIVIV) *+ 00U QUL | X'
LUNG=1ERy BORROW{NG 129845, 800 «200 «000 «OOu « 000 »0V0 4S513.pu0 2106100
MET ADUITIONS TO EQUETY 86%30.400 «000 «000 s UYu 00V «000 «Quu "
ACU LT IINS TO OLANT & C4VIPHENT 20)74J.000 55069%.000 *U00 1694100y *Quu *«you Jb6bSeyuu 23705y
LCMG-T1EAY DEXT HETIHENECNI «000 + 000 «000 7202,93)3 22024543 1202,5313 1202,53) 1202,
CPLANT § EFVIPHENT (¢ URJGINAL cosT? 203434000 2095124000 209512.0y0 2264530000 226453eygy 2264530900 2303 48eg0u 25384930y,
NET PRUPEITY ¢ €QUIPHENT 203943000 408464918 9827014 20T 14be3b) 2926589902 1Ye56Teod) 939620 ,79 2112745
TGIaL UEBT “BALANCE : 1298450600 1296454600 1296450600 1224430088 1152909533 1ULD3IUeQO0 IuY348eys? |1B82p009
ToTaL EQUILY Capplay 84317+4900 83170400 B13)70400 912290148 9322V0 48 Y2290 448 12,9548 922u5ey.
TIHE PEXR1QO 19u4 1965 1988 1987 1968 198y 190 1Y91
OT«L™ LINE 1TENS . . .
UFEAATINN AND WA INTENANCE EXPENSES 10DSZ.000 11545000 129bBY9.000 126540000 1340Yeguy 16DIBepLU " 0Y¥Bbeguy  §77%3ey
INTEREST €XPENSES YY4SBebYy 88804452 10718058 JUO3D*GIS 9345295 Bboges7s  J21)deysy  jlbube’,
TOTAaL ExPENSES 3SU T3 2 J81I1e983 42101083 4¥T2yc?48  4228347}) S¢0810eeS2 64213716 88V 48
UNJSEY TAX LOSS «000 +00U «000 «0VO QUL «+QUO e Uuo s U
JHUSED INVESTHMENT Taf CREDILS «000 «0ULL «000 s0ULV . «00U +u00 eUUL ’ U
LONG=TEdN BORROW|NG +U00 J034%.000 ] *00U 4258e.upy  Sjplpg2ruuv 186Y5.9yu o
AET AQUITIUNS TO €Ul Y «000 +0U0 +000 00U 00U 00U ) .U
ADD1 11043 TO PLANT & EQUIPMENT s 0V 90%2.000 3024000 155920000 'UlL  47%5peu000 3325.yuu ey
LIve=TETY O0ERT RETIREMEN] 720253 1392709 85874796 BS67¢75% 102539533 10253533 JU253e53)  JgiTyey
Poanl & EUIPuENT (3 ORL1aINAL CcaST) 2538430000 262935.000 2664374000 2¥402Y°00u 23202%0yQy 32Y579epou 3329yYeggu JI6b S ey
NED PRURENTY & EUUIPHENT 2342239363 2062640472 202462+422 2106530395 202819454 2925350117 23673y5+,45 2337800
TOTay UFBT 4A1LANCE 1110044100 133950,699 12638¢,9449 J 468 5,189 11981 9,855 |5)688,123 §4961u?,590 1356,9,6
Tutay €QUITY Capj(rAL Y2205.08Y 922050069 9383yuctbQ 10381792 Jyudb el Y2 103l 292 JuNBLelY2 oS I260y
TitE PEntnoO 1992 1993 1994 1995 19Y6 Tulay AVENAGLE
UTHER LINE JTENS ' .
UPLRATIUN AND MAINTENANCE EXPENSES 1863Y.000 175264000 204584000 219180000 22440eyQy 266979.y0u 1148495y
INTERES! €rPENSES 1084%e506y Y783e23) B6v¥oe03"¢ Togdedys 6541005 1YieVeensY Youyeps 3
131aL £2PENSES 726470130 720410282 2351Be200 250470577 70680%+856 o V880007 4o 4Te)y
UYJSEu Tax LOSS 00V 00D +000 $000 00V +000 «QUO
UNUSEU INVESTHENT 142 CHEULLTS «000 +000 ° 000 *0uy *0U0 - J839.113 1Y1e¥56
VUNG=TEYM BOYNUWCING 00U ) *ULO * 00V *U0U 2445618600 116484505
Nel AQUITIONS 1O CquiTY +000 +0U0 «000 e UVO sUOU  B643UsUD 41154733
AUDTTEONS Y0 PLANT ¢ EWUIPAENTY +000 «0V0 VLD +0uv 'UDU JJoev25.0U0 HbpJIVeyHe
CUNG=I1EIY  0EuT RETIKEHMELNT 133294089 - 13584922 1I569e922 (35890922  250YeY.2 (/6b87eub? LARPERATL
PLANT & EIVIPSNENT (¢ URIGI'IAL CNST) 334825.000 43,625,090 IJ6825.000 36829000 I34H45.0005817013.000 477uuuesl il
NET PROPEQTY ¢ gauiPrENT 2220229502 41266801312 20341009066 [YIYVSaelje JO48Y 7 en/yys2 2190750 2082406559
TOTaL UEdY BALANCE 1222%0+413 108700490 95110589 B1520%648  80930¢2 262464 38059y | /33%00,7
Tufay CQUITY CapglalL 1053204222 10%065,588 J06693,526 JJ822:¢55% JUTIOUBIU2UI/ITY).2)0 YI0Ul.v7?
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Gas REFERENCC SYSTEM CoMVERSION To comaINED CYCLE.
SYSTENS, SCIENCE AND SOFTWARE

LAC PROLECT[ON MODEL.
PIPELINE. TRANSPORTATION SYSTEMS

DATE
RUN 1D

. p——

‘Pag REPORT NO, 3¢~~~ CAPITAL' INVESTHENT PLANN[NG

TInE PERIOO 1176 1927.
acrivipy, - v )
ANNUAL THROUGHPUT (MMMNCF=MILES] +000 574768
NOWMINAL TARIFF [UNIT TRANSPe CMARGED 2000 4604000
ACTUAL  TARIFYF o 2000 63242465
NOMINAL TRANSPORTATION REVENUCS *000. 3)8120e1})
_ . ACTuaL TOTAL REVENVES L 000 245184374
LEvERAGE
LONG=TEQW (FUNOED) 0EBT TO CAPITAL' & sleyly bloenpy
""" LONG=TERW IFUyOEO) 03T Ta ASSCYS & 77 604000 5P647!
PROFITABILITY
’ OPCRATING INCOME {rPC RULES) T 1000 209454772
-? ANNUAL FpC RATE Bagt 212374000 2094574723 2
o RATE OF RETURY ON RATE BASE (%) : #000 10,000
"o RaTg OF RETURN ON PalO=IN CAPITALIN) - - *000. 1leaoy’
Rale OF RCTURY ON TOTALI CAPITar! (W) . 2000 Y.688
.-.tutnc‘ CON‘un"‘ON . . e . - - T a-=a came e .
ANNUAL CNERGY USAGE OF GAS (MuCF) «000 1273,0805
ANNUAL ERERGY COSTS +000. 1808+80)
PRESENT YALUE OF CNERGY VUSED 2000. 164403006
UNIT COST OF (WERQY S/MHCF +000. 1420
- OTMER MEASURES: .. et it e e e
TOTAL ANNUAL' UXIT €OSTS L «000 430720
PRESENT vALUEL DfF AvERAGE UNIT COSTS +000 3P1e56)
- NET IwCcOWE IBoOOK PROFIT)’ o YT T e81134000 9951459)
PRESENY VALVUE DF 300K PROFITS *5133.000 90464+90)
NET CASH GENEQATEO OURING THE pERIOD 000 1780645))
T PRESLNT vaLUE OF NET CASH GENERATED «000 146187,755
DISCOUNT FACTQR 1910000 8} @ 1+000 909
- - — - - - Fig. 4.1.1

TNERGY. CONSERVATION STUOY = 7

NOVEMBER

e 1976

Oa

NRFLY]

GAS REF SYSTEM CONVERSION TO
CASE P38

19278

610326
491000
621+210

12499398
360984598

SYCIL
57.10})

20375.460
02625068
10,0086
104560
$432)

1471,407
21944165
1813¢340

1e49)

§17+24)
344827
93al.287
717934130
172364225
1924%,81 8
826

.3-4(a)

1979

'LTRATS

7270650 °

5920348
47256095)
3845690297

60005 -
8742469

197860703
'9779206‘)
10,001
9896
4el9S

1647,000
2578enp )
19370238

1e5646

4p9+028
307309
87914525
64050202
92420982
49444374
e715]

AND ENERGY CONSERVATION IMPACT PROyECTION

1980

684556
764032

56692

62379038
3884854287

58.588
550339

19205+91)
1919609057
10,005
910

402354

1843,32}
301debby
2058437)

JobdYy

393e¢402
2684699
880Y4,01 4

6013280

92550482
63414598
68)

TE 110174

45

0b

COMBINECD CYCLE

LINKED W]TH PEPGAS

101476

*GAS2

{DOLLARS IN THOUSANDS} -~ --—

198}

72¢228
. 8024230
S6be747

B7943.542°

4p93408496

624154
o 584565

199484070
1993%6+000
10,008

Flewl2

4¢58)

20bb,802
35670340

22150037 7

1e728

3774798

2344582

101380451 °

62954180
10569.0689
575,404
XY

|82

719¢742
BY2e34b
5Y8,076
638PLepbt
449964602

420839
$8479¢

212264238
2121244488
10,008
1101235
Y4370

2808,
50890247
28724747

1¢6}2

§16e527
23541} 8
P6v2432306
5983¢9066
113124528

$3854027

1584

196)

T9e¢47
BBYenb
Y IE)
7029340
4944500y

65'7“
61025

224NN ST
22429297
10.00
1201
LR ¥

IN15,38
49925
333501
1290

8§60y

223/

1078445

9534}

J2vBoey;

662,51
'S

szoE-d
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 Gas REFCRENCE SYSTCN COMVERSION TOo COMBINED CYCLE!

SYSTENS,

s=—=-P3g-RCPORT NOe—dg -

TIME: PERIOD } 178y
T AR R .
ANNUAL THROUGHPUT (HMHMCFRMILES) B4
o NOMINAL TaRIFg (UN)T TRANSPe CMARGE] 9284488
TTTTUT UUACTUMG TARLFE LT = " 6160923
NOAINAL IRANSDORIAIICM REVENUES 74751489)
L. ACTUAL TOTALI REVENUES 809034278
LEVERAGE
- LONG*Tran trUuotnl oLal T0 caPyval s 440421
ket o oNGeTERW IFUGOEO) OEBT TO ASSETS & T T 94184
PROFITABILLITY
It OPERATING INCOME' lsPC RULES) ~ " 7" "77=""~"" 230264096
ANNUAL FpC RATE BAST 230196478
RaTE OF RETURN ON RATEC BASE () 10+00)
Rty T RATT OF RCTURY ON PALO=IN CAPjrALINT 11091 .
RATC OF RCTURY ON TORAL CAPITaL' (8§} Y.187
'"""“(Ntﬂcf CONSU4PT]ON " o
ANHUAL ENERGY USAGE IF GAS (Mucr) 30694445
ANHUAL ENERGY COSTS &1 120024
TUTTTTTT T OPRALSENT VALUE OF ENCRGY USED T O1881,27)
UN[T COST OF CNERGY S/MWNHCF. 10998
.- < OTMER MEASURES™ -+ - - <0 - o emme e o—ee
TOTAL ANNUAL UN|T COSTS 4470148
PRISENT VALUE OF AVERAGE UNIT cosrs 2084578
TTTTTTTTT O ONELR INCOnE' 1B00X PROFIT e T '9BSIeNY8
PRESENT vALUL OF 800K PROFITS 45964720
NET CASH GENERATCO QURING THE PCR1IND 1199%.045
TSI T PRESENT VALUET OF NET CASH GENCRATED 77 © 7 55974443
DISCOUNT FACTOR (31Ce000 §) ® 487

CAPTTAL INVESTHENT PLANNING

Fig.

SCIENCE AND SOFYWARE

LAC PROJECTION mODCNL. .
PIPELINE TRANSPORTATION SYSTENS

DATC
RUN 10

AND ENERGY
1988

Bbels2
9756121
6274790

640084382
B4y0B854259

%009
684777

228249,.78
22815158
10.004
1lebd)
44372

J6434577.

80b6)ebs?
419,782
2,078

4604683
195374
‘103462,029
43949.512
11717.920
yobe,584
1424

DATE. 110176

ENERGY CONSERVATION STUOY

NOVEMBER Lo 1976 TRRTIELS
GAS REF SYSTEM CONVERSION TO
CASE P3Be

CONSERyATION IMPACY PROJECTION

198¢é

694748
1023.827
621390
19110029
$5260.80)

62.98)
58e26)

225610653}

‘226961 ¢58]

10,007

fle228

9,432

N166e89
P178474)
3s23b8,680)

2+20)

4454458
179483
§00174048
84204
104349+ b84
4023,008
3B

4.1.1.3-40)

1987

93:708
1075%¢070
8400794
10074090598
600460295

671568

600564

239644975
237588478)
10003
1Je788
44749

47190299
109360413

3826,001°

2¢312

LYY R RL!
1610026
1324949
§2930347
134954372
43794592
0150

1vue

97137
1128082y

891240

1096500489
67154e4)12

. 654043

56¢0238

25263.470°

25206470008
1gs008
120370

He459

S4S5%4424
1325%¢208
4224.792
20429

$15¢57)
1640277
“109¥54501
3503508
130254758
4150408
0J]19

1909

101105
11854269
734¢%20
1198240758
74304+450

640308

SQ.HJG

24372877
243502229
1g.009
120395
4ye086

60240902
18364098
450,46
24550

I 3YXRAL!
1646386
1101448623
3189,745
1272213)

36854149 -

290

PAGE

l6

COMBINED CYCLE
LINKED AITH PEPGAS

(DOLLARS IN THOyYSANDS)

19%0

105¢18)
12444528
73044480
1309034530
768300920

61¢8)39

$2¢1 )7

23450:95)
234377045

10s0006

12440}
89064

67074810

17960097%

"4729.b08

de0780

8374205

1410463
JI0L7469Y
2901303
10U} 00067

0 46)

2844,127

101476

*GAS2

1994

108 ¢
1304,
T34
141999,
1979%;

58
480

22540
229252
10
Ide

Se.

7140
2065
*95).
2

S43»
1300
1122é,
2687
f7u5.

2390,

gc0g-yd



GAS RgrgRemce SYSTEM CONVERSION To cOMBINED CYCLE

SYSTEMS,

SCIENCE: ANO SOFTWARE

LAC PROJECTION MODEL.

—P3@ REPORY NOs 38 """ " " ~“CAPITAL" INVESTMENT PLANNING
TIME PER1IOD 1992
CaCTIVITY e e VL ..
ANNUAL THROUGHPUT (MMWMNCFeM]ILES) 108+pbs
NOWINAL YaRIFr (UNLT TRANSPs cWARGE] 13724092
-os ACTUAL TARIFS - T " TuSe1bs

NOMINAL TRANS®ORTATION REVENVUCES 149099061

ACTUAL" 10TAL REVENVES 860573998
LEVERAGE : }
LONG®TERY (FUNDED) OE&Y TO CAPIYAL'S 651556
LONG=TERN {FUNOED) OEBT TO ASSETS & 4407086 7
PROFITABILITY
: OPERATING INCOME (rPPC RULES) AT T 21629404
ANNUAL FpC RATE BASE 2161274898

o RATE OF RETURN ON RATC BASE (%) 10.008 10.00°9 10.010
] RATE 0F RETURN ON PAJO®IN CAPpraALYS) 124870 13+109 13,329
5’ RATE GF RETURN ON TOTAL CAPITan! (&} Se81) 84313 4,876
<~ ENERGY CONSUMPTION : Co e
ANNUAL FNERGY USAGE OF GAS (Mucr) 7403+408 74034408 7403608
ANNUAL ENERGY COSTS 218560027 272946.828 240%44270
PRESENT VALUE OF ENERGY USED 47544509 4540304 4333.928
OISCOUNTED VAILUE OF ENERGY USEo (9 10,00 %) » 894174184 .
UNIT COST OF €NERGY B/uM(CF ) 20952 Jeloo 3e258
OYNER MEASURES
TOTAL ANNUAL UNIT €OSTS 550,449 5564370 S67¢200
T 77T PRESENT VALUE OF AVERAGE UNIT coSTS 119794 110+471 1024037
DISCOUNTED AVERAGE [ANNUAL) UNIT COSTS
B {LONG-RUN AVERAGE COSTS) (3 10,00 -8} » 1924738
NET INCOME' (BOOK PROFITI TURI434024) 116420310 118500443 .
PRESENT VaLUE oF 800X PROFITS ) 248084425 23033069 2131407
DISCOUNTED VALUEL OF BOOK PROFITS (9 10400 l‘ 818924937
-t NET CASH GENERATED OURING THE PERIOD 207513 99424284 9914714
PRESENT VALUE OF NET CASH GENERATED 2186,009 1987,024 1769,90)
DISCOUNTEOD NET CASH FLOW (@ 10,00 %} = 1041814533
TTTTTT QUSCOUNT FACTOR (9100000 8) @ 21 s198 180
secsoe INTERNAL RAYC UF RETURN XTFY Y
- e [}
OCF = RO| oOF " 8 86845+999 (Frow YEAR | OVER L0 YEARS) = 8480 %
‘' 0CF e ROI OF 8 88841999 (FRoM YEAR 1 OVER 15 YEARS) ® (ledl
0CF « ROI OofF 8 8884L+99% (FRoM YEAR | OVER 20 YEARS) ® 12,70 &

-

T PIPELINE TRANSPORIATION SYSTEMS

DATE
RUN JD

AND ENERGY

1993

108a4s6b

18400697
7560916
1565544592
82250898

Slet?)
40¢55)

207180482

20700317

0AY£.IIOI7§

" ENERGY CONSERVATION STVUDY '

NOVEMBER |

v 1976

11136145

GAS REF SYSTEM CONVERSJON TO

CASE PlBs

1994

10Bssbs
J512e732
769588

1641824318 )
816274870

W7418]
364052

198074560
1978786342

Fiqg.

1995

1080648
158684348
783¢747
72601043y
85166053

Hle956

e N2,

188864033

1887530564

104006

130872

Te5b9

74030808
29301+08)
41367230

3e4)17

'5751929

940109

j12i4601)8
19850988

10024+306
16404689

e 184

CONSERYATION IMPACT PROJECTION

1996

{0Besosb
j667+787
7Y8¢388

TOTAL

17874723
21823.527
130284370

181231+504205)7654406
86755038312247797445)

350049
254788

RARATLEIR

59.894

S2¢08)

4310214375

179628078745200220625

10006
13905
8+J08

7403+808
26568437
jv46.887
Jes588

5867232
87214

123534535
18360274

10130740
1505.87¢0

AR

4.1.1.3-4(c)

946306
IRRERR A
4.055

929180903
2471 9Qge40Y
696170154

460954

76820974
3854762

206799.789
818924937

2307624527
10418],53)

2000

(X3

COMBINED CYCLE
LINKEO W|TH PEPGAS

AVERAGE

. 894386
1091e}70
6Sley
j025%8.270
612474872

59.894
52+68)

215514069
22600101318
945386
Ilel?}
4,655

§6450945
123594522
+000

24348

48%0 )49
T 19207236

C 99424418
409400987

10F808.872
52094077

«000

01476 -

*GAS2

(0OLLARS IN THOUSANDS) ~ -

., Gz0€e-y

4
i



T VIME! PER1IOD

OTHER LINE 1TENS

TE-v

——

————— - —

" AODITIONS TO PLANT & EQUIPMENT T~ ~

OPERATION AND MAINTONANCE: CXPENSES
INTEREST ¢XPEuSES

TOTAL CXPENSES
UNUSED TAX LOSS
UNUSED INVESTMENT TaX cntolrs
LONG"TERM BOQROWING
NET ADCITI{ONS TO EQUITY

LONG=TERM DERT RET_REMENT.

PLANT & gQUIPHENT (3 ORIGINALL CoSID

NET PROPERTY ¢ EQUIPHENT e
ToTAL DEBT BALANCE

6as Rtf:ﬂtu:(_SVSvtq CONV(RSIOQ'io COMBINED CYCLE:

'.lv’. ehe e e

0000
+ 000
+000

+000.

042,858
13324634002
68Byle999
209972.000

+000
209972000

"209972.000

1332630002

ToTAL CQUETY CAppTAL ) B 83728:999
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Table. 4.1.1.3-4

" INPUTS AND ASSUMPTIONS

1. Full-load efficiency advantage of the combined cycle

over. the simple cycle is one-third.

2. Full-load efficiency advantage of the regenerative cycle

over the simple cycle is 18%.
3. Pfesent values'calculated at 10%.
4, All profits paid in divideﬁds.
5. Ali-excess‘working capital reinvested at 6%.
6. Straigﬁt—line depreciation on first three capital outlays.
7. 'Markei growth as shown in line 1 of the figures.

8; Base year 1975, inflated as shown in Fig. 4.1.1.3-3



Table 4.1.1.3-5

COMPARISON OF ENGINE CYCLES

Energy use, avg., BSCF/yr
Efficiency improvement, avg., %
Energy cost, avg., M $/yr

Present value of energy used,
M$(20 years)

Actual tariff, avg.,
K$/GSCF-Mi

Tariff reduction, %

Present value of book profit,
M$ '

10-yr RoI-DCF, %
zo_yr n oon n

Unused investment tax credits,
MS$ '

Simple

17.28

96.43

707

87.24

12.14

3.84

R-3025



R-3025

average 1975 cost of gas turbines in pipeline service. The
‘above dollars per horsepower figure is based on a total horse-
power réquirement of 147,507 (see Table 4.1.1.3—2) and 1is

derived as follows:

$(96.43-69.62)106
$(96.43)10°

x 147,507 hp = 41,011 hp

attributable to bottoming cycle

$(96.43 - 69.62)10°
41.011 hp

= $654/hp.

Bottoming engines, because of their requirements for boilers
and condensers, are almost certain to be more expensive than
open-cycle gas turbines, but not by a factor of two. It is
therefore concluded that the bottoming engine offers to the
ERDA a highly attractive opportunity for pipeline energy

conservation.

Third, from the point of view of the consumer, the tariff
reduction is approximately 8% with the improved engines. And
fourth, from the point of view of the pipeline operator, lines
7-10 offer little inducement to invest in energy-conservative
devices. Book profits actually fall slightly. For practical
purposes, ﬁoI is the same for all three cases, the small varia-
tions being primarily due to differences in timing of the capi-
tal infusions. Unused investment credits inc:ease strongly
for the energy-conservative cases, as explained in another
report of this series, R-3024, Section 7.0 (see ppP. 1 and ? of
this report). Basically, they derive from the limit upon pro-
fit imposed by FPC regulation. Clearly, some change in that
regulation is needed to induce pipeline operators to conserve

energy.

One regulatory change that seems reasonable would in effect
divide the advantage between the consumer and the pipeline
operator. This could be accomplished by allowing the operator
to retain, in addition to the standard regulated return, a portion,
e.g., one half, of the additional profit generated by the energy-

conservative innovation. For purposes of policy promulgation,
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the allowance for additional profit should be related to the
guantity of energy saved. However, other regulatory changes

appear more effective (see R.3024 of this series).

4.1.1.4 Combined System Performance

Both the organic fluid Rankine cycle
and the steam Rankine cycle were seen to offer high potential
for waste heat recovery. Projected efficiencies for the gas tur-

bine combined cycle are shown in Fig. 4.1.1.4-1.

For a typical first generation gas'turbine with a thermo-
dynamic efficiency of approximately 20% (heat rate of 12725); the
addition of an organic Rankine cycle can increase the over-all
system efficiency to 31%, while a steam bottoming system with
150°F condensing temperéture will increase the over-all.combined
efficiency to 27%. (These figures are calculated for different
éite conditions and condensing temperatures than in the examples
in Section 4.1.1.3. Thus, lower efficiencies are calculated in
this case.) However, this turbine can also be improved by adding .
a recuperator. In fact, efficiency improvement with a recupera-
‘tor is eqgual to the improvement with an organic Rankine cycle
and better than a steam Rankine cycle. Because of this it is
unlikely that the bottoming engine would be cost-effective. This
conclusion bears repeating for emphasis. The bottoming engine,
inherently, does not appear to be a viable candidate for retrofit

on the first-generation turbine.

For a second generation gas turbine, representative of
those installed on pipelines, the typical thermodynamic effi-
A cienéy is 27% respectively. The organic Rankine bottoming
éystem appearé to be cost effective, and can be applied as
retrofit to the second generation gas turbine installations.

For a third generation gas turbine with a typical effi-
ciency of 35%, recuperation is not possible because there is

not enough positive temperature differential between the
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power turbine exhaust gas temperature and the compressor dis-
charge gas temperature. The steam Rankine bottoming system
barely offers a 20% improvement but the organic Rankine bottom-
ing system offers a combined efficiency of 47%, a 34% improve-
ment over the open engine. ’

In summary, for gas turbine enéines of the future, the
organic Rankine bottoming system will offer far better than
20% improvement over the open engine, while the steam system
will offer less than 20% imprévement. In terms of product

obsolescence, the organic system is much to be preferred.

The reason for this very significant conclusion lies in
the upward trend of turbine inlet temperatures through the
years. As inlet temperatures have risen, so have exhaust
temperatures, so that the heat available to the bottoming engine
increases significantly with each new generation of turbine.
Along with these higher temperatures, pressure ratios increase,
so that regeneration beéomes less attractive, and finally im-

practical.

The situation with the gas reciprocators is discussed in
Section 4.1.3 below, where it is shown that approximately 20%
improvement can be realized by addipg the organic Rankine even
to the most efficient engines, This conclusion is opposite
to that which was reached relative to the tﬁrbines{ To repeat
for emphasis, the older (firSt generation) turbines are not
viable candidates for bottoming engine retrofit, whereas with
the reciprocators the opposite is true, .i.e., the older machines
are indeed attractive retrofit candidates. Some further

implications will be examined in Section 4.1.3.
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4.1.2 Diesel Engine Improvements

The diesel engine has achieved an advanced
state of development and has gained increasing acceptance in
heavy duty vehicular as well as industrial applications in
recent years. Today's modern} high output'diesel engine
approaches 40% brake thermal efficiency over a broad range of
speeds and loads. While there is some potential for further
improvement in efficiency through the use cf high pressure
ratio turbocharging and design refinements such as bore-stroke’
ratio, reduced friction, and improved combustion, such gains
will probably be marginal. For achievement of significant
gains in fuel economy, more basic changes are necessary. Fore-
most among these are combined cycle systems employing either
the Brayton cycle or the Rankine cycle to recover part of the

exhaust energy of the diesel cycle.

4.1.2.1 Diesel-Brayton Combined Cycles

This type of power plant in its usual
form is known as a turbo-compound engine consisting cf a diesel
engine and a gas turbine whose outputs are connected together
through gearing into a common output shaft.

Considerable work on turbo-compounding was carried out
in the 1945-55 period, mainly in the aircraft field where the
main benefits were realized in altitude performance. The Cur-
tiss-Wright engine nsed in the DC-7 aircraft is a well known
example of a 4-cycle spark ignition turbo-compound engine.
The Napier Nomad turbo-compound engine (Sammons et al.,'55),
developed during the same period,4represented'a very significant
echievement.as a high output, lightweight diesel engine for air-
craft use. The Napier engine, shown in Fig. 4.1.2.1-1, consisted
of a 2-stroke diesel engine and an axial flow compressor coupled
together to form a common system: the l2-stage axial compressor
provided a pressure ratio of 8:25:1 at maximum speed at an
efficiency of 75-77.5%. The engine produced 3135 net hp with
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a specific fuel consumption of 0.345 lb/hp/hr and had only
small variation in sfc with load. The engine was never put

into production, primarily because its development came at a

~time when jet aircraft were superseding the propeller craft.

A more recent concept in turbo-compound engines is the Johns-
ton engine (Hope et al.,'7l) now undergoing development at Engine
Systems, Inc., under contract to the Army Tank-Automotive Com--
mand. The engine, illustrated schematically in Fig. 4.1.2.1-2,
consists of four basic subsystems: (1) a high-pressure ratio
turbocharger, (2) an uncooled piston, (3) internal cooling of
the cylinder liner and valve passages (details not shown in
the figure), and (4) a separate exhaust turbine connected by
reduction gearing to the engine crankshaft. The most unusual
feature of the engine is the fact that the piston and cylinder
are not cooled by‘conventional means. The engine utilizes a
uniflow, two-stroke arrangement with excess airflow during the
valve opeh position of the stroke, and the éiston and cylinder
are internally cooled by the excess scavenging air. The cool-
ing medium is the working fluid, so that all the unavailable
energy is contained in the exhaust and can be recovered in an
exhaust turbine. The design by Engine Systems is based on a 4:1
pressure ratio and 83% efficiency in both the turbocharger tur-
bine and exhaust power turbine. Matching the turbo unit to the
engine for off-design conditions is planned to be accomplished

by use of variable area nozzles in the power turbine.

The potential performance improvement of the Johnston

engine over typical commercial diesel engines is shown in Fig.

4.1.2.1-3. The curve of specific fuel consumption vs. horse-

power was computed as part of a study for the Army Tank-Auto-
motive Command. The data indicate a potential reduction of 25
to 30% in fuel consumption along with an increase in horsepower
of 100% for the Johnston engine over commercial engines of the
same displacement, speed, and fuel/air'ratio (Anderson et al.,

'75).
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The key to performance in the Johnston engine lies in the
method of cooling the piston and cylinder. Cooling is not
accomplished in the conventional manner of rejecting heat to a
separate cooling medium, either liguid or air. Conventional
engines lose approximately 30% of their heat energy by this
route. Instead, the piston-cylinder configuration is designed
as shown in Fig. 4.1.2.1-4, with an elongated piston in a uni-
flow scavenged, two-stroke arrangement, which keeps the piston
rings on the bottom of the piston, = away from the area of
high metal temperatures. The cylinder is internally cooled
with excess scavenge air and the cylinder head and valves by
air flow which enters the exhaust stream, so that most of the
cooling energy is recovered in the exhaust turbine. The primary
engine parts must be manufactured from high temperature alloys
to enable the engine to run at much higher temperatures (800-

1300°F) than heretofore used in.conventional engines.

Engine Systems, Inc., under contract with the U.S.Army Tank-
Automotlve Command, has deS1gned and bullt a single-cylinder
research engine around this concept and conducted limited tests
which demonstrated the feasibility of the design, including the
fact that the engine components could operate satisfactorily at
elevated (1500°F) metal temperatures (Anderson et al.'75). In a
subsequent contract, heat transfer and stress analyses were per-
formed for each of the major components, i.e., the cyiindér head,
exhaust valve, piston, and cylinder liner (Anderson et gl.'76).

A study was also made of a General Motors 6V71 diesel engine,
modified to the Johnston engine concept, as a potential candidate
for the Army XM-723 vehicle. The study indicated a specific

fuel consumption of 0.297, representing a reduction of 27-45%

as compared with present commercial, high-output diesel engines
used in this vehicle. The study also showed that the engine
would offer an appreciable weight reduction and would fit into

a slightly smaller envelope'than the existing commercial en-
gines in the XM-723 vehicle. Further development awaits

availability of funds.
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The methods by which the Johnston engine accomplishes
internal cooling are particulérly adaptable to two-stroke
engines. Another development program, supported jointly by
the Cummins Engine Co. and the Army Tank-Automotive Command,
seeks to accomplish the same basic objective of internal cool-
ing of a four-stroke engine. The basic approach, which is to
insulate the cylinder and use ceramic hot parts, is described
in a paper by Kamo ('76). Cummins is hopeful that basic feasi-

.bility of a 0.18 BSFC will be demonstreted in 1978.

It is important to emphasize the fundamental distinction
between the type of turbocompounding that is represented by
the Curtiss-Wright and Napier engines on the one hand, and by
the Johnston and Cummins engines on the other. That distinc-
tion lies in the fact fhat these latter engines are cooled
inte;nally by air, which then enters the exhaust stream.
Thus, the approximately 30% of input energy that is ordinarily
lost in the cooiing jacket is available to the bottoming engine.
While both types of engine are turbocompounded, it is the
internal cooling of the Johnston and Cummins engines that gives
them their high potential for improved performance. The impor-
tance of internal cooling, and the opportunity that it |
offers;are furthér‘discussed in Section 4.1.3, where its ex-

ploitation in the pipeline industry is recommended.

4,1.2.2 Diesel-Rankine Combined Cycles

Recent development effort on power

plants utilizing diesel engines combined with Rankine bottom-

ing cycles has been prompted by rising fuel costs and the in-
creasing emphasis on energy conservation. Earlier work on auto-
motive Rankine cycle systems which was directed toward redﬁcing
air pollution has provided much of the technology for the diesel-
Rankine cycle power plant. A number of industrial firms, in- ‘
cluding Aerojet-General Corp., Thermo Electron Corp., Sund-l

strand Aviation, Steam Engine Systems, Lear Motors Corp.,
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Steam Power Systems, and Brobeck & Associates, have built and
demonstrated Rankine cycle power plants in passenger cars or
buses under sponsorship of federal or state government agencies.
Others, notably General Motors Research Laboratories and Ford
Motor Co., have developed experimental Rankine cycle systems
for vehicles, either as in-house projects or htilizing subcon-
tractors. While the majority of these systems have been steam
powered, thrée of the companies (Aerojet, Thermo Electron,
and -Sundstrand) have used organic working fluids.
Extensive investigation, supported by  NASA, the AEC,

and DOD agencies, have also been conducted in recent years on
small organic Rankine cycle units foi space applications and
ground electric power.’ Studies to determine critical param-
eters for organic working fluids have been made by these and
other organizations. These programs have likewise provided
useful technology for current efforts on organic Rankine-bét—

toming cycle systems.

Selection of the working fluid for a Rankine cycle system
often proves to be an extremely complex process, since it in-
volves several major considerations, such as: thermodynamic
characteristics, thermal decomposition, compatibility with
materials used in structural components, safety characteristics
(flammability, tokicity, etc.), freezing temperature, and cost.
Water has the advantage of being inexpensive, plentiful, chem-
ically stable to high temperatures, and having well defined
thermodynamic properties. Howevér, it is not a good working
fluid for low-temperature applications because its high latent
‘heat of vaporization makes it necessary to employ low boiling

pressures; therefore, cycle efficiency is low.

The general nature of this inferiority of water to other
fluids may be seen by referring to Figs. 4.1.2.2-1 - 4.1.2.2-3.
The first of these merely displays the Carnot-equivalent cycle on

the temperature-entropy plot for later comparison. The second
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Fig. 4.1.2.2-3 Typical saturation line for organic fluid
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figure shows thé saturation line for water and a typical steam
cycle. Because of the negative slope of the vapor side of the
dome, to expand to a point A with acceptable moisture content
in the steam, it is necessary to superheat to point B, much
higher in temperature than point C,'the boiling temperature.
Instead of the parallelogram of the ideal cycle, one is left
"with the pointed cycle shape, in which only an infinitesimal
quantity of heat is added at the maximum cycle'temperature.

The cycle is therefore very inefficient compared to the ideal.

On the other hand, as shown in Fig. 4.1.2.2-3, the organics
generally possess a positive slope vapor line, which permits
expansion to the superheated (dry) point A from the saturated
point B. By regeneration to point C, the area to be compared
with Fig. 4.1.2.2-1 is ADEBA and with the area -ADECBA on Fig.
4.1.2,2-2. If the peak temperatures B are the same for both
organic and water, the saturation pressure at which the water
boils (from E to C in Fig. 4.1.2.2-2) is low and so is cycle
efficiency. A number of other fluids besides water have been
used or are being used in Rankine cycle systems. These in-
clude refrigerants (Freon 12 and 113), trifluoroethanol, fluor-
ochemical (FC-75), isopropyl biphenyl, monochlorobenzene, toluene
and pyridine. Each of these fluids has advantages and disad-
vantages, and at the present time no ideal fluid exists to fit
all applications. In general, however, for low level heat
recovery systems, most of the organic fluids are superior to

water from a thermal efficiency standpoint.

One of the most significant recent efforts in diesel-
Rankine combined cycles is the power plant developed by Thermo
Electron Corp., using a truck diesel engine compounded with
an organic Rankine system (Patel et al.,'76). A schematic of
this system is shown in Fig. 4.1.2.2-4. The working fluid is
Fluorinol-50, which is a mixture of 50 mole percent trifluoro-

ethanol and 50 mole percent water. The design point characteristics
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are given in the shematic. Since the turbine efficiency is

the most critical parameter affecting overall system performance,
a three-stage axial turbine running at 60,000 rpm with a
projected efficiency of 75.5% was selected.

. At the conclusion of a conceptual design study, a test
system was assembled using a new Mack engine and existing but
non-optimum organic Rankine cycle hardware. Performance mapping
consisted of running 26 tests over the normal operating range
of the diesel engine. The maximum power obtained from the ORCS
was 35.6 hp, representing a gain of 13% in power without additional
fuel. On the basis of these results it was concluded that, with
optimum hardware, a 15% improvement in fuel economy over a typical
duty cycle could be achieved. This woﬁld represent a potential
reduction of 1.8 billion gals/yr. (120,000 barrels/day) in the
near term transportation requirements.

A comprehensive study of high efficiency electrical power
'plants, consisting of diesel engines complete with organic working
fluid Rankine cyclé engines was prepared for the National Science
Foundation, Division of Advanced Energy Research and Technology, '
by Thermo Election Corp. (Morgan et al., '74). The results showed
that, using a commercially available 37.3 efficient diesel engine
in a 5.5 MWe combined cycle system, an overall efficiency of
46.3% could be achieved (24% power increase over the basic diesel engine
at zero additional fuel consumption. It was also shown that,
using a large experimental 4-cycle spark-ignited gas engine with
a combustion air refrigeration system, there 'is a potential
for greater than 50% overall éfficiency;

Another major effort planned for future application to a
diesel engine is being initiated by Sundstrand Aviation under a
contract recently awarded by ERDA. This program involves the
design, development, test and demonstration of a 600 KW organic
Rankine cycle, waste heat power conversion system. Prototype
systems now being manufactured at Sundstrand are expected to

be running by the summer of 1977. Following initial tests using



a laboratory heat source, it is planﬁed to install several
‘systems in bottoming cycle plants with diesel engines at
electric utilities. A 22.5% conversion efficiency is predicted
for the organic Rankine cycle system, using toluene (CP-25)

as the working fluid and based on cycle conditions of 550°F/300

psi at the turbine inlet.
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Otto cycle engines accounted for approximately
40% of the total horsepower installed in gas pipeline compressor
stations in the United States between 1963 and 1973 (Gas’Turbine
Intern'l.,'74). They probably account for half of all presently
existing installations. These are spark-ignition reciprocating
- units operating on natural gas fuel. Many of the units are
integral engine-compressor types in which some of the cylinders
are used for power and the remainder for compression. Others
are matched engine-compressor sets in which the engine drives a

separate reciprocating compressor.

Natural gas has a very high antiknock rating, making
possible the achievement of high efficiency in engines through
the use of high compression ratios. There are presently a
'number of manufacturers marketing engines with compression ratios
of 10.5:1 or higher. The application of turbo-supercharging
has achieved further gains in power output and fuel economy,
with some of the modern, high-compression, turbocharged engines
showing specific fuel consumption figures at full load as low
as 6500 BTU/hp-hr (39% thermal efficiency).

A number of gas engines have been installed in recent
years in on-site power (also referred to as "total energy").
installations. Most of these installations have been in
commercial buildings where the primary uses of waste heat
energy from the engines have been for space heating, water
heating, and air conditioning. The same concept has been
explored for ihdustrial applications with additional uses of
heat energy such as process heating, cooling, evapérators, and
possible conversion of any residual heat to mechanical energy
(Baker '62).

Only limited effort to date has been directed toward
adapting bottoming cycles to gas reciprocating engines to
produce additional shaft power, however the same principles
used in the diesel applications,which were discussed in

Section 4.1.2 can be adapted to gas engines. Studies have

4-54



R-3025

shown that adding an organic Rankine bottoming system to a gas
reciprocator can result in more than a 20% improvement in fuel
economy, even in the most efficient engines, Figure 4.1.3-1.

Figure 4.,1.3-2 shows a ty?ical heat balance for a four-
. stroke, naturally aspirated gas engine. The unconverted heat
is removed through four mechanisms : '

(1) Cooling water
(2) Exhaust gas

(3) ZLubricating 0il
(4) Radiation

The 1ow level of lube o0il temperatures (190°F or less) and of
radiative surface temperatures makes the conversion of heat
from these sources into useful work impractical. The primary
sources for waste heat recovery therefore are jacket-wéter and
exhaust gas. The full load heat rejection from the jacket
water is seen in Fig. 4.1.3-2 to be about equal to the useful
shaft work and to the energy in the ekhaﬁst. There are two

possibilities for recovery of this energy.

The first and obvious recovery possibility is by raising
steam with the heat from the jacket. in'principle, the
jacket itself could be designed as a steam generator, but prac-
tical limitations would more likely favor simply using the
cooling water heat for building heat or to power absorption
refrigeration equipment. Current practice is to operate with
coolingy water temperatures around 2500F, which is quite com-
patible with standard heating and cooling equipment. At this
low temperature, conversion to mechanical power is economically
beyond consideration, and no innovative propdsals for such
conversion have been identified in the course of this study.
It is therefore concluded that this possibility presents no
R&D opportunity and no further work on the concept is recom-

mended.
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The second recovery possibility is to cool the engine in-
ternally with intake air in a manner similar to that discussed
in Section 4.1.2, so that the heat appears in the engine exhaust
at a much higher temperature than when removed in cooling water.
This heat can then be converted to shaft work in a bottoming
engine to supplement the shaft output bf the primary engine.

This of course is equivalent to turbo-compounding the gas

engine in a way similar to that discussed for the diesel engine
in Section 4.1.2 above. The compounding (bottoming) engine

can be either an open cycle turbine or a closed cycle engine

and in principle could be either a Brayton or Rankine engine and
either a turbine or a reciprocator. Internal cooling of the gas
engine therefore endows the engine with the same attractiveness
for bottomihg as the turbine, in which all of the unconverted
heat appears in the exhaust. Figure 4.,1.3-2 suggests that
25-30% of the inpﬁt energy is available .to the bottoming engine.
In view of this attractiyeness, two additional points are

worth discussion.

First, if the internal cooling development can be conducted‘
in a way that is applicable to both gas and diesel engines,
the benefits would extend far beyond the pipeline industry.
They would accrue in vehicular and marine traﬁsportation and
in many stationary applications as well.

Second, it is worth noting that both the diesel and gas
engines burn precious forms of fuel whose conservation holds
attractions beyond the simple economics of fuel consumption.

A rough estimate of the potential energetic and economic bene-
fits of turbocompounding may be derived as follows. It has
been found elsewnhere in this study (Report R-3022) that the
energy consumed in gas pipelines is approximately 0.7 Quad/yr.
If only 40% of this energy is consumed in reciprocating
engines, and if it is practical to retrofit half of these,

and if internal cooling of these could recover the 25-30% of



R-3025

input which is presently lost in the cooling water, and if

the bottoming engine can convert 25-30% of that, then the

energy saving woulé be

0.7x101°x0.4x0.5%0.25x0.3 = 1.05x10"> BTU/yr

If, as all evidence indicates, the true economic value of
natural gas will soon exceed $2/Mcf, the value of this saving
will exceed $20 million per year. And on a five-year payout

basis, the justified R&D expenditures would exceed $100 million.

Even if this rough estimate is several times too high, when the
‘extreme breadth of potential application outside the pipeline
industry is recognized, it is clear that an extremely attractive
energy conservation opportunity lies in the internal cooling

of pipeline engines. This attraction is further enhanced by
recalling the discussion in Section 4.1.1.4, where it was seen -
that in contrast to the situation with the -turbines, therolder
rec;procatofs are attractive candidates for bottoming retrofit.
And by development of internal cooling, the advanced recip-

rocators of the future also become attractive candidates.
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4.2 Electric Motor Improvements

Liquid pipelines are predominantly powered by electric
motors of the integral horsepower polyphase a-c type. 1In the
reference pipeline systems, the sizes range from approximately
1500 to 3500 hp. Motors of this size are generally built by
the electrical manufacturers to customer specifications, includ-
ing efficiencies and power factors. Efficiencies are generally
in the range of 90 to 95%.

4.2.1 Improvements in Motor Efficiency

in conventional electric motors, power losses
can be reduced by reducing core losses. There are several
methods for doing this, e.g., adding more material to the mag-
netic core structure or using steel with improved core loss pro-
perties. Another method is to increase the cross sectional area
of the conductors, which means adding winding material to the
stator and rotor. Another technique is to shorten the air gap,
thereby reducing the magnetizing current required. These are
" straightforward design approaches of the type which would be
used by any electric motor manufacturer in meeting specifica-
tions for high efficiency, and do not appear to warrant any sig-
nificant research and development effort to improve motor effi-

ciencies over the present industry average.

The application of superconductors to electrical‘power
equipment is another area which has received wide attention in
recent years and is regarded as having excellent future potential
-for certain applications. Efforts are being concentrated on
electric motors and generators as well as superconductive trans-

mission lines.

Superconductivity is the total loss of electrical resistance
shown by some materials when they are cooled to temperatures
near absolute zero. Mercury, tin, lead, and many metal alloys
become perfect conductors of eléctr%city near}absolute zero.

Recent research has resulted in improved alloys such as niobium-
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tin and niobium-titanium, although the cost of these materials
remains high (approximately $2 per gram for the high purity
metal and $30 per pound for the regular grade).

The first efforts, in the 1960's, to incorporate supercon-
ducting windings in rotating electrical equipment were directed
toward military applications in which size and weight were the
dominant concerns. These programs established the feasibility
of using supercohductors in field windings and the need to
shield the superconductor from any a-c magnetic field. Advances
in superconducting magnet technology, namely, the commercial
availability of stabilized NbTi conductors, were the principal
causes of the recent efforts to develop large rotating electrical

machinery with superconducting field windings.

In 1970, the International Research and Develobment Co. (IRD)
of the United Kingdom demonstrated a 3250-hp homopolar electric
motor with a superconducting NbTi field winding that could
operate at full load in an industrial environment. Homopolar
machines are variants of the Faraday-disk machine in which the
armature (a thin circular disk) rotates inside an axial magnetic
field. Such machines operate at low voltages and high currents
(Hein}'74).

Although there has been an increasing interest recently in
industrial application of high-rated homopolar machines, the
main thrust of development to date has been for marine propul-
sion systeﬁs. The United Kingdom Ministry of Defense (MOD)
has funded the development by IRD of a d-c superconducting
generator and motor suitable for use as a propulsion system
for high speed naval vessels. The U.S. Navy has launched a major
effort to develop a superconducting motor generator for ship
propulsion systems. Design contracts for a 30,000 hp m-g set
have been awarded to the General Electric Co. and Garrett Corp.
Two 3,000vﬁp prototype superconducting motors are being con-
structed by GE and are scheduled for sea trials beginning in
late 1977. These units will be forerunners of 20,000 to 40,000
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hp motors being planned for the future. Because of the low
voltage, high current characteristiés, it is necessary to use
liguid metal brushes to carry the heavy current across the
narrow gap separating the rotor and stator. A major advance

in the design of these current collectors is claimed by GE
engineers, using liquid sodium-potassium collectors which can
handle 100 times the 60-A/in2 capacity of solid collectors made

of carbon-based materials and which do not wear.

For a-c machinery, the principal market area of interest has
been central power stations. MIT, under a project funded by
Edison Electric Institute, developed and demonstrated a 45-kva
machine and initiated work on a machine with a capacity of 2 to 3
Mw. Westinghouse has built and tested a 5-Mva superconducting
machine, demonstrating technical feasibility of their design.
Design considerations prohibit the use of superconductors in the
a-c armature as the losses would be too high; therefore, the
superconductors are used in the d-c field winding only. Cur-
rent collection problems for large blocs of power rule out
rotating the armature winding, so the. field winding is rotated.
Pfoblems_associated with a rotating cryogenic system have pre-
sented a formidable challenge to the cryogenic and structural
engineers. Although both MIT and Westinghouse have demonstrated
workable designs, the economics of such generators has yet to
be demonstrated (Hein,'74).

In assessing the adaptability of superconducting motors for
pipeline use, there appears little likelihood that such machines
will reach the stage of practical application within the next
10 years. The only types envisioned for near term use are the
d~c homopolar type machines planned for marine propulsion sys-
tems, and these do not appear economically attractive except
in large power sizes (20,000 to 40,000 hp). Although these
machines offer a major advantage in power density ovef conven-
tional motors, the gains'in efficiency are only marginal and

are largely offset by the losses involved in the refrigeration
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equipment. The motor sizes involved in liquid pipelines are
much smaller and are a-c polyphase induction type. If supercon-
ducting d-c machines were used, it would be necessary to use a
3-phase rectifier bank in order to obtain a-c output, and this
output would be synchronous a-c only. For these reasons, the
expenditure of aﬁy significant R&D effort toward superconducting
electric motors for pipeline application does not appear war-

,ranted at this time.

4.2,2 Improvements in Speed Variability

Pipeline motors operate upon alternating current,
and are therefore constant-speed machines. Control is then
effected by throttling excess pressure above that which the pipe
is designed to accept. This throttled energy is of course
wasted, and sometimes is a significant quantity. If a cheap
way could be found to vary motor speed, either within the motor
itself or in a variable-speed drive, a considerable saving of

energy could be realized in petroieum—products pipelines.

An interesting possibility for accomplishing speed varia-
bility in bipeliné,pump motors is the use of DC motors powered

by fuel cells. - This concept is discussed in Section 4.3.6.2.
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4.3 Fuel Cells

The fuel cell concept and characteristics are briefly de-
scribed below and shown in Figs. 4.3.1-1 through 4.3.2-4 (ERDA76-54).

4.3.1 Fuel Cell Description

The fuel cell was first invented in 1839, but
remained little more than a scientific curiosity until the
first practical fuel cell was demonstrated 120 years later by
Francis T. Bacon and J. C. Frost of Cambridge University. Since
that time, fuel cells have been widely used in the space program
where they have proved to be reliable sources of electrical
Power. However, their high cost and the difficulties involved
in adapting their use to conventional hydrocarbon fuels have

effectively retarded their adoption as ground power sources.

The fuel cell is an electrochemical device which directly
combines fuel and air to produce electricity. As illustrated
in Fig. 4.3.1-1, a hydrogen-rich fuel is electrocheémically com-
bined directly with oxygen from the air to produce electricity
and water. Waste heat produced by the reaction process is removed
with the exhausted air. Single fuel cells can be assembled in

stacks of varying sizes to produce a wide range of output levels.
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Fig. 4.3.1-1 - Fuel Cell Concept
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Small fuel cell powerolants have been built and operated
for a variety of space and military applications, and experimental
demonstrators have been built for commercial applications. The
specific arrangement of the powerplant is dependent on the fuel
and oxidant used and the application requirements. For space
applications, such as the Apollo manned voyage to the moon, the
fuel cells operated on pure hydrogen and oxygen, supplying DC
power for the spacecraft electrical needs. This very simple

powerplant consisted of a cell stack and a few controls.

commercial fuel cell powerplants operating on fossil fuel
and air comprise three main elements as shown schematically in
Fig. 4.3.1-2. The reformer section converts natural or synthetic
hydrocarbon fuels into a more reactive form, usually a gaseous
mixture of hydrogen with some carbon dioxide. The power section
consists of a number of individual cells which convert the pro-

cessed fuel with oxygen from the air to produce DC power. In
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Fig. 4,3,1-2 - The fuel cell powerplant
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the fuel cell stack the individual cells ‘are connected electri-
cally in series to permit generation of any voltage up to hun-
dreds or thousands of volts DC. Connecting a number of cell
stack assemblies in parallel permits generation of any power
level from kilowatts to multimegawatts. The third major section
is the inverter, which converts the DC output from the fuel cell
section to alternating current (AC) electricity suitable for

commercial applications.

4.3.2 Attractive Characteristics of Fuel Cells

Fuel cells have several unique characteristics
which make them attractive for use in several power generation

applications. These include the following:

(1) High theoretical conversion efficiency

Fuel cell powerplants ranging in power out-
put from less than 100 kw to thousands of kilowatts are poten-
tially capable of efficiencies comparable to the best diesel

electric and large steam powerplants, as shown in Fig. 4,3,2-1

60
50
FUEL CELL SYSTEMS
TR CONNREY
= o, DIESEL
AR I )'\
EFFICIENCY* 30 mmm A
PERCENT ﬂ
20 /////
STEAM
10 & GAS TURBINE
GASOLINE SYSTEMS
ELECTRIC
o Ao L L1l A1t Lrereg 3 2L ELNI o A el ARl
1 10 100 1,000 10,000 100,000
POWER OUTPUT -~ KILOWATTS
*BASED ON LOWER HEATING VALUE
Fig. 4,3.2-1 - Fuel economy/efficiency for all sizes
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First generation fuel cell powerplants, using phosphoric acid
electrolyte, are being developed with efficiencies approach-
ing 40%, while future advanced fuel cell concepts are expected

to have efficiencies as high as 57%.

(2) High efficiency in small plant sizes

Efficient fuel cell systems based on pre-
sent concepts can be built in sizes starting at about 25 kw.
Small increases in efficiency can be obtained with increasing
size up to about 1 megawatt, with little efficiency gain beyond
this power level. Again referring to Fig. 4. 3.2-1, it is seen
that fuel cell efficiencies are potentially quite good in sizes

down to 10 kwe and below.

(3) Good part-load efficiency

Unlike conventional power generation equip-
ment, fuel cell efficiency increases as load is reduced from
rated power, down to about 40% load is illustrated in Fig.
4.3.2-2, This characteristic is important, as most generating
equipment, except for base load plants, is required to operate
over a wide range of outputs, in many cases averaging only

about 50% over the equipment lifetime.
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(4) Low noise, thermal, and chemical pollution

Because of the static nature of the con-
version process, fuel cell powerplants are inherenfly less
noisy than conventional steam and internal combustion engine
powerplants. The noise sources are confined to the ancillary
equipment such as liquid feed pumps,and air blowers which are
required for fuel cells. Cooling water is not required since
waste heat can be transferred directly to the atmosphere.
Measured emissions from experimental powerplants have shown
that the fuel cell exhaust contains significantly lower emis-
sions of particulates, oxides of nitrogen, and sulfur oxide, as
indicated in Fig. 4,3,2-3.

POUNDS OF POLLUTANTS PER MILLION BTU HEAT INPUT

}-———— FEDERAL STANDARDS 3_—'-—|

GAS-FIRED OIL-FIRED COAL-FIRED

CENTRAL CENTRAL CENTRAL  EXPERIMENTAL
STATION STATION STATION _FUEL CELLS""
PARTICULATES __ 01 __ _ _ _ __ o ___. 0l __ 0.0000029 ~
N0y 02 0 __ 03— __ 0.7 ____ | 0.013-0.018
NO
S0, ______ REQUIREMENT____08 ________ 2. ___ © 0.000023

*FEDERAL STANDARDS EFFECTIVE 8-17-T1
**YORK RESEARCH CORP., Y-7309 APRIL 1870

Fig. 4,3.2-3 - Environmental impact

(5) Siting flexibility

The characteristics of high efficiency in
small sizes and low bollution allow considerable freedom in
site selection of fuel cell powerplants. Those systemé that
require a minimum of fuel processing can be placed within build-

ings to make direct use of some of the waste heat for space
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heating and cooling. Fig. 4.3,2-4 shows the relative amounts

and types of waste heat available.

1ol LOSSES THERMAL USES
90} SUITABLE ’ PROCESS HEAT/STEAM

sol PR NEATED! 0w crape ear  ABSORPTION CHILLERS

0b | &re0°F o AIR CONDITIONING
SUITABLE o REFRIGERATION
FOR

PERCENT ENERGYSO[
TO FUEL CELL so} Pg?g:as HIGH GRADE HEAT SPACE HEATING

- wr BEEISE WATER HEATING
301 )

20t | Gaaey | eectricy

0r

0

Fig. 4,3.2-4 - Waste heat recovery potential

4,3,3 Problem Areas

5 The primary problems associated with fuel
cell development are cost and durability. For the fuel cell to
pProduce electricity at room temperature, the electrodes must
contain a very active electrocatalyst. The best catalysts
discovered to date are very expensive noble metals - platinum
‘?nd palladiqm. Niékel.electrodes, which operate at higher
temperatures, have electrode degradation and electrolyte decay
problems. Fuel processing eguipment is complexyand expensive.
Steam reforming, partial oxidation hydrocracking, and hydro-
desulfurization ére being tried with varying‘degrees of success.
Steam reforming is a fuel processing technique now commonly
being used with phosphoric acid electrolyte fuel cells. It
requires a nickel catalyst, which is susceptible to poisoning
by elements such as lead, chrome, and sulfur. Light distillate
fuels low in contaminants give the best results with steam

reforming, but the life of such a system is presently limited
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to about 15,000 hours (approximately two years) [Aronson, 1977].
Initial work has been done chiefly with phosphoric acid electro-
lyte, which has an operating temperature of 160 to 200°C. The
next generation of fuel cells, expected to have higher efficiency,
will probably use molten carbonate. Operating at a temperature
of 500 to 700°C, this material is more tolerant of fuel impurities,
but there are other problems yet to be solved. Life for existing
molten carbonate cells is presently reported to be aQout 10,000
hours, as compared with a projected life of 50,000 hours by 1985
[Aronson, 1977]. The last element in the fuel cell system, the
inverter which converts DC to AC, does not yet exist in the sizes
needed for large-scale power conversion. Recent development of
large SCR's which can be used in thyristor inverter circuits may
be the answer, but there are a number of problems that must be

overcome to meet the goal of 96% efficiency,

4,3,4 Fuel Cell Development-Status

_ Fuel cells can be categorized according to
their state of development into three generations [NASA, 1975].
Goals for the first and second generation programs of the electric

utility industry are shown below [Pickett, 1977].

First Second
Characteristic Generation Generation
Commercial introduction 1980 1985
Capital. cost (1975 $) $250/kw - $200/kw
Life 20 years 20 years
Stack refurbishment 40,000 hr 40,000 hr
Heat rate (Btu/kwh) 9300-9000 7500-7300
Thermal efficiency, % 36.7-37.8 45.5-46,8
Fuel Naptha Distillate

Natural gas Naptha

Clean coal Natural gas

fuels

Clean coal fuels
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The two major programs in support of the electric utility indus-
try fuel cell effort are the FCG-1 and RP114 programs, both in-
itiated in 1972. The FCG-1l is sponsored by the United Technologies
Corp. and nine major utilities, with the objective of bringing

a first generafion, 26-MW fuel cell power plant into commercial
service by 1980. Tﬁe nine utilities are supporting this effort
through down payments on provisional orders for a total of 56
FCG-1l's. The RP114 project was initiated By United Technologies
Corp. and Edison Electric Institute (EEI). It is intended to
broaden the application of fuel cells beyond the near-term needs
of environmentally constrained utilities to result in a second
generation powerplant for the utility industr& to be used in a

wide variety of applications.

The Electric Power Research Institute (EPRI), upon its
formation in 1973, inherited the RP114 program [Pickett, 1976] 1In
1974, EPRI expanded its fuel cell activities and implemented a com-
prehensive, 5-year plan, addressing four major‘issues criticai
to achieving the objectives of the second-generation fuel cell

powerplant. Critical issues include the following:

(1) Participation with ERDA in an early 4.8-MW demon-
stration of the FCG-1 technology, as a prerequisite to the

second-generation program.

(2) Cost/availability of fuel cells in the near to
intermediate future. In October 1974, a contract was awarded
to Arthur D. Little, Inc. (RP318) to develop fuel cell scenarios

and favorable means of integrating these within utility systems.

(3) Delineation of the techno-economics of fuel cells in
a utility network. Of primary importance is a gquantification
of the benefits as well as a definition of the potential fuel
cell market as a function of capital cost. A contract with
Public Service/Electric and Gas Co., New Jersey (RP729) is pro-
viding these assessments,‘using the scenarios from the RP318

project.
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(4) A matrix of technology programs necessary to maxi-
mize the probability of achieving second-generation goals.
These include projects to improve catalysts for phosphoric acid
fuel cells (in the hope of stimulating a breakthrough necessary
to achieve second-generation goals); to investigate molten
carbonate electrode sintering mechanisms, since the molten car-
bonate fuel cell is the main thrust of the RP114 program; and
to assess techniques for femoval of CO, from the‘fuel stream

in the alkaline fuel cell.

The FCG-1 program is being accomplished by scaling up
from kilowatts to megawatts in sfeps: (a) a 1-MW pilot plant,
(b) a 4.8-M¥ demonstration plant; and (c) 26 demonstration
plants, all to precede the manufacture of 26 -MW FCG-1 power-
élants on a production basis. The 1-MW pilot plant has been
built, and tested successfully. The 4.8-MW demonstration plant
is under contract, jointly funded by ERDA ($25 million), EPRI
($5 million), and UTC ($12 million). Delivery is scheduled '
for mid-1978 and testing by early 1979. Results of testing
the 1-MW unit indicate that the 4.8-MV plant will meet the per-
formance goal of 9300 Btu/kw-hr at rated output.

Another major program called TARGET (Team to Advance
Research for Gas Energy Transformation) ,sponsored by United
Technologies Corp. (UTC) and a numbef of companies in the gas in-
dustry, is aimed at providing a family of fuel cell powerplants
in the 25-250 XKW range for on-site power generation in buildings
and at industrial locations. This program began in 1967 and
was sponsored by 28 natural gas transmission and distribution
utilities. It has since expanded to include gas utilities and
combination gas and electric utility companies. The program
has been jointly funded at $56 million for effort from 1967
to the present. On the basis of market studies, 40 KW was
selected as an appropriate size for initial entry into com-

mercial and multiresidential markets. As a result, work has
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been directed toward development of a 40 KW powerplant, desig-
nated PC18. A pilot PC18 powerplant has been tested and is
reported to have met or exceeded all of its operational and
performance goals [Handley, 1976], including 40% overall effi-
ciency over a wide operating range. This efficiency figure is
based on the lower heating vélue of natural gas fuel, and includes
the inverter as well as all other elements in the system. Limita-
tions in utility company funding have precluded early completion
of the development and demonstration required to introduce the

40 KW unit into the commercial market.

Third generation fuel cells are characterized by efficiency
goals much higher than second generation systems, A goal of 50
to 60% efficiency has been established [NASA, 1975]. There is
little existing technology for third generation systems, The
only known candidate is the solid oxide electrolyte system,

Demonstration systems are probably 15 to 20 years away.

NASA Lewis Research Center, at the request of ERDA and
NSF, has studied a number of advanced energy conversion systems
for central station, base load electric power generation using
coal and coal-derived fuels [Warshay, 1976]. The program is
identified as Energy Conversion Alternatives Study (ECAS). The
General Electric Co. and the Westinghouse Electric Corp. were
selected by competitive bidding to study these systems, one of
which is fuel cell powerplants. In ECAS Phase I, three typés of
low-temperature fuel cells and two types of high-temperature
fuel gells.were subjected to a parametric analysis. An important
part of the high-temperature fuel cell system study was the util-
ization of waste heat either by a steam bottoming cycle, the
coal gasifier, or bLulli. These arc referred tn as integrated
cases. In the Westinghouse study of high-temperature fuel cells,
efficiencies of 48 to 53% were projected for the zirconia solid
electrolyte integrated case, and 46% for thg molten carbonate

system. In both GE and Westinghouse studies,
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the highest overall efficiencies of the low-temperature
fuel cell powerplants (30 to 36%) was appreciably lower than

efficiencies of the high-temperature systems.

4,3,5 Technology Assessment

While the feasibility of attaining high effi-
ciencies in medium to large size fuel cell powerplants using
fossil fuels is proven, extensive engineering development and
demonstration remain té be done before overall economics, operat-
ing reliability, and durability are established. Development
effort is needed on all major elements, including the fuel pro-

cessing equipment, fuel cells, and inverters [NASA, 1975].

4,3.5.1 Fuel Processing Technology

Although fuel processing technology
is well established, a direct application of this technology
will not meet the expected requirements of commercial fuel cell
powerplants for the near term or the future. The particulér
requirements of the fuel cell application dictate new require-
ments for the processor. For example, for a.phosphoric acid
fuel cell the specification limits for sulfur and CO impose _
stringent. requirements on the fuel and fuel processor, and com-
plex integration of the processor with the fuel cell stack is
often necessary. The future U.S. energy scenarios anticipate
the introduction of coal-derived fuels, which will impose new
reguirements on the fuel processor. In the first generation
FCG-1 phosphoric acid fuel cell powerplant, the fuel processor
development, though quite advanced, is by no means complete?
Steam reforming is limited to lower molecular weight fuels
(up to naptha). A number of advanced concepts are being
developed under the EPRI program to extend the range of fuels
to be processed by steam reforming. Other processes receiving
attention are partial oxidation and cracking (thermal or cata-

lytic). As far as second generation fuel cell systems are con-
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cerned, little other than systems work by UTC is being done

on fuel processing for the molten carbonate system. Work
need§ to be done to determine the cells' tolerance to possible
fuelbimpurities, their sensitivity to diluents, etc., in order
to develop an optimum fuel processor for the molten carbonate

system.

4,3.5.2 Fuel Cell Technology

For terrestrial applications, fuel
cells can be categorized by operating temperature: low = ambient
to 200°C, intermediate = 200°C to 700°¢C, and high = above 700°C.
The first generétion fuel cells will operate in the low tem--
pefature range. The problems most common to fuel cells in
this category are in the area of electrocatalysis, invariant
cell life, and system cost. In the intermediate temperature
Category the major problemrs are to develop the materials to
assure long cell life in the severe conditions of high temper-
ature and corrosive environment. In the high temperature
category, using solid-oxide electrolyte, the materials problems
will be more difficult to overcome than for the intermediate

range.

4,3.5.3 Power Conditioning Technology

The basic element of the fuel cell

power processor is the inverter, which accomplishes DC to AC

_power conversion. Inverters designed for low power applica=

tions are commonplace. However, large-scale inverters capable
of handling megawatts of power have not been built, largely
because of lack of semiconductors which can handle the large
currents and voltages. In addition, the common designs are
handicapped by poor efficiencies. UTC, working with semicon-
ductor manufacturers, has devéloped and tested inverters for
the TARGET program capabie 6f handling 20 and 40KW power

levels. They are also testing a 1.8MW unit inverter for use
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as a building block in the FCG-1 power processor, using com-
ponents proved in the TARGET program. The scale-up is accom- .
plished by operating the SCR's in a sefies/parallel combination
to accommodate the higher fuel cell power voltages. Potential

problems in the scale-up include:

(1) Simultaneous triggering of the SCR's, which are
operated in series. Simultaneity is necessary to prevent exces-

sive voltage buildup on the late-firing SCR's.

(2) Possible unbalanced load current sharing among SCR's

operated in parallel; and

' (3) Undetected failure of individual SCR's or drive cir-

cuits, resulting in overloading of the remaining SCR's.

The UTC goals. show a target efficiency of 96% for the FCG-1 vs
a demonstrated 90% on the 25KW TARGET inverters. Although
some improvements can be expected from the scale-up to the
megawatt size, efficiency, compatibility, and life tests will

be required to verify design goals.

./
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4.3.6 Pipeline Applications of Fuel Cells

In Section 4.2.2 above,-iﬁyﬁas noted that, if
an economical and efficient means could be found to vary the
speed of the pump motors, an appreciable saving in energy could
be realized. To understand the losses that are thus avoided,
it is necessary to examine products pipeline duty cycles in
some detail.

4.3.6.1 Duty Cycles in Products Pipelines

There are two throttling conditions
that arise in pipeline operation, depending upon whether the
system is asked to pass maximum throughout or to accommodate
to a specified pumping schedule below maximum capacity. These
variations in duty arise from seasonal variations and from the
necessity to switch products in order to accommodate all shippers'
requirements. As an example of the former, the demand for fuel
0il and LPG increases in thé fall and winter, whereas in the
spring and summer the traffic is predominanfly gasoline. The
switches to accommodate shippers arise because of the necessity,
as a common carrier, to serve all shippers without discrimination.
Thus common carrier products pipelines operate in products cycles
of seven to ten days during which they guarantee to accept for
shipment at least a (proportionate) part of every tender.

It may be noted in passing that
similar 51tuatlons can arise in crude lines if different types
of crude are found in proximity to each other. However, this

- seldom occurs, so that the discussion here refers only to
products lines. These conditions are discussed in reverse
order, in the sections that follow.

4.3.6.1.1 Throttling losses at less
than maximum throughout

4 Because of lower
capital and maintenance costs and ease of operation, the large
mgjority of liquid pipeline system pumps are driven by constant-

speed electric motors. Except for older, small-diameter systems,
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generally crude oil gathering, the pipeline pumps are
centrifugal units which are directly coupled to an electric
motor driver and therefore rotate at the same speed as the
motor. The available driver-pump options are, with few
exceptions:

(1) Constant speed electric motor driving a centrifugal
pump through a variable-speed coupling

(2) Variable-speed electric motor directly connected to
a centrifugal pump

(3) Constant-speed belt drive connecting electric motor
and positive displacement pump

(4) Variable-speed engine driving either centrifugal or
positive displacement pumps. '

The disadvantage of the constant-sPeéd motor directly connected
to the centrifugal pump is the inflexibility of pump speed‘and
therefore the inability to vary the pumping rate and the
velocity of the liquid in the pipeline. o

With constant-speed motor-centrifugal pump units, flow
variations are obtained by either or a combination of the
folldwing:

(1) Pumping through control valves that waste controlled
amounts of the pump full discharge pressure in order
to decrease line pressure and flow velocity to the
specific flow required by the shipping schedule.

(2) Installing multiple pump and motor units at each
pump station tov operate either in series or
parallel, in combinations that yield the specific
flow required by the shipping schedule.

When a pipeline company is responsible for transporting a fixed
quantity of liquid over a fixed time period with electric-motor

driven centrifugal pumps, the management has the option of:



(1)

(2)

(3)

The lack
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Selectihg the most nearly optimum combination of the
available pumping units and pumping every minute of

the time allotted at a constant average rate, throttling

" excess enerdgy by a control valve, or

Pumping with a selected number of units, without
wasting pressure in a control valve, but pumping at

a faster rate than necessary, thereby wasting energy
both in start/stop and in increased fluid friction loss.
Pumping under a combination of part time without
throttling and part time with throttling, in such

proportion that the average flow is the required one.

of ability to adjust pipeline flow with economical

and efficient variable speed motors or couplings results in

one or more of the following economic losses :

(1)
(2)
“(3)

(4)

Although
they are

More pumps and motors are installed in a system than

otherwise would be necessary.

"Energy is wasted when pressure is reduced by throttling

in a control valve.

Energy is wasted in fluid friction when flow in a
pipeline is at a higher Qelocity than necessary.
Energy is wasted by start/stop transients; however,

this loss is not usually significant.

variable speed‘drivers and couplings are available,

characterized by high initial capital costs and

low efficiences, so that economic analysis for most pipeline

systems results in the direct coupling of constant speed

motors to centrifugal pumps.

It is instructive to consider an example representing

the following conditions :
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(1) Pumping schedule - 30,000 bbl/day of medium-viscosity
. petroleum products. " ‘ .
(2) Pump-motor combined efficiency - 85%.
(3) Pump and system characteristics as shown on
‘Figure 4.3.6.1.1-1.

The operating options, together with the associated increases
'in necessary installed capacity and in energy consumption, are
listed in Table 4.3.6.1.1-1. It is seen that the increase

in available horsepower fequired is about 30%, and the energy
wastage is from 5 to 15%. It is to be noted that the least:
"wasteful ‘option (lf does not include the energy wasted in the

transient.

If the flow requirement were such that it became necessary
to bring a third pump on stream, point e shows the flow below
which throttling is required to maintéin allowable line pressure.
This limiting pressure constitutes the limit upon system
capacity: The examples in the table relate to limits imposed
by pump capacity. Both limits can.be important in the

operation of the pipeline.



Pump discharge pressure (psi)

300

330

700

600
550
400
300

200

100

//

/ /7
Throttllng
area //C/C/;/

Max1mum allowable pre

3 pumps in series

/ /

. 2 pumps in series

Pump
Character
-, -istics

\\\ System characteristic

R R NS R

0

Fig.

10 20 30 40 50
Flow (Bl/Day x 1000)

4.3.6.1.1-1 - Pump and system characteristics



Table 4.3.6.1.1-1

Energy Wasted By Operating Options Available with Constant-Speed
Pumps ,
(1)- Ideal - Operating Point a (unattainable) -

30,000 bbl/day @380 psi for 24 hr = 24 x 228 hp = 5472 hp-hr

(2)- Operating on split rate schedule (attainable)
Point b

34,000. bbl/day €440 psi for 16.3 hr = 16.3 x 299.2 hp = 4877 hp-hr

Point c ,
21,500 bbl/day €276 psi for 7.7 hr = 7.7 x 118.7 hp = 914
' ‘ 5791 hp-hr

Increase over ideal 71.2 hp capacity 319 hp-hr average
31.2% : 5.8% '
(3) - Operating two pumps and throttling (attainable)
Point d ' ' ' .
30,000 bbl/day @495 psi for 24 hr = 24 x 297 hp = 7128 hp-hr

Increase over ideal . 69 hp capacity 1656 hp-hr average
30.2% 30.3%

(1) - Operating two pumps wide open (attainable)
Point b .
34,000 bbl/day @440 psi for 21.17 hr = 21.17 x 299.2 hp = 6334 hp-hr

Increase over ideal 71.2 hp capacity 862 hp-hr average
31.2% 15.0%
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4.3.6.1.2 Throttling losses at maximum

throughput

It has been seen in the
preceding section that when the schedule calls for delivery at
full capacity of two pumps, the optimum operating point is
at b in Fig. 4.3.6.1.1-1. However, as will be seen from the
discussion to follow, even when the demand exceeds capacity,
it is seldom possible to achieve that optimum operating
condition. The reason lies in the nature of the pipeline
duty cycle, and can perhaps best be explained by an example,
whicb'accordingly is presented in Figs. 4.3.6.1.2-1 through
-18. The case presented is a section of an actual, existing
pipeline, and the duty cycles in the example are representative

of those imposed upon that line in its day to day operations.

In -1 is seen the hydraulic gradient when the linefill is
all gasoline, flowing 1000 bbl/hr.- The associated préssures
are identified, i.e., 682 and 64 psi. at the‘hpstream and .down-
stream ends of the section respectively. The power require-
ment of 1000 hp, shown at the initial station at which it is

applied, is the maximum single-unit capacity at that station.

In -2, a.second 1000-hp unit has been brought on line at
the midpoint station. Throughput is 1500 bbl/hr, only a 50%
increase for a 100% power increase. In -3, a third 1000-hp
pump has been brought on line at the quarter point. The effect
of a fourth unit at the three-guarter point is shown in -4.

Total power has now risen to 4000 hp and flow is 2200 bbl/hr.

Now, second 1000-hp units will be activated at each sta-
tion in turn. When the second units are activated at the
upstream station (-5) and at the midpoint station (-6), the
flow is still only 2650 bbl/hr (shown as the gradient after

the midpoint station).

When further increase in flow is attempted by activation

of a second unit at the quarter point‘(—7), throttling
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becomes necessary to avoid excessive pipe pressures at the
quarter and midpoint station discharges. A total of 337 psi

is throttled away at these two stations. Addition of a second
unit at the three-quarter point (-8, solid lines) increases

flow to 3060, without throttling, but when an additional 600 hp,
the last available unit, is brought on the first station,
throttling again becomes necessary at the first and second sta-
‘tions (-8, dashed lines), while flow is increased by only 40
barrels. This is the maximum possible flow with an all-gasoline
linefill. 1In practice, this last increment of 600 hp would
almost never be justified for the small flow increment that it
provides. '

From the foregoing, it has been seen that throttling
may be necessary at bofh maximum flow and a number of
intermediate flows below the maximum. These throttling losses
could be avoided if an economical, efficient, variable-speed

motor or coupling were available.

| It may be noted that the final discharge pressure at the
downstream end of the section varies in the foregoing cases
between a low of 11 psi and a high of 99. The pressure re-
quirement at that point may vary, depending upon whether the
fluid is being diverted into storage or into tankers for trans-
port. Whatever the requirement, any excess pressure represents
an energy wastage which could be eliminated if appropriate means

of pump speed control were available.

Now suppose that the schedule calls for fuel oil to begin
movement through the line, following the gasoline. The profile
which exists as the oil approaches the gquarter point section -
is shown in -9. The last available pump unit of 600 hp at the
initial station, shown in -8 as the dashed lines, is not in

service in -9, leaving 2000 hp in service at that station.
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The allowable line pressure is exceeded at the first and third
stations, resulting in throttling energy waste at those two
points.

There is also another interesting difference between the
situations portrayed in -8 and -9, namely, at the downstream
end of the section. With the throttling at stations 1 and 3,
the flow is reduced to 2700 bbl/hr in -9 from the 3060 in -8,
and one unit at station 4 has been deactivated. Even so, the
pressure at the downstream end of the section is 104 psi,
which may exceed the requirement at that point and thus con-

stitute a waste.

As the fuel o0il approaches station 3 in -10 it is seen that
the 1000-hp unit in station 1 has been replaced by the 600-hp
unit to avoid throttling from 1422 psi to 1330 psi at station 1
and from 1608 to 1461 at station 2. It is still necessary to
throttle station 2 from 1461 psi down to 1328 psi. Flow is now
down to 2500 bbl/hr from the previous 2700.

In -11, as the fuel o0il is approaching station 3, two
profiles are shown. The solid line is the profile that would
be required to hold the 2500 bbl/hr flow from the previous
figure, i.e., activation of a second 1000-hp unit at station 4.
Station 2 would then be throttling from 1553 pis to 1328, and
station 3 from 1503 to 1424, while the downstream discharge
pressure would be 530 psi. By not activating the additional
pump at station 4, only 80 bbl/hr of flow is lost, discharge
pressure is held to 34 psi, and some, though of course less,
throttling is still necessary at station 2, frdm 1461 psi to
1328, and at station 3, 1424 to 1330.

The situation when the entire line fill is fuel oil is
depicted in -12. Flow is 2500 bbl/hr with eight pumping
in service, and throttling is necessary at stations 2, 3,
and 4.
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Now consider the case in which propane instead of fuel oil
follows the gasoline. Earlier, -8 has shown that, with all
nine pumps operating, 3100 bbl/hr of gasoline could flow.

When propane is introduced at the upstream end, the profile is
as shown in -13 as the propane apprcaches station 2, and as in .
=14 as the propane approaches 1ta£ion 3. The controlling seg—’
ment is always the one just ahead of the propane. 1In -15,
solid line profile, as propane approaches station 4, that sta-
tion requires 2000 Hp to maintain the‘flow. However, the
dashed line shows that‘1000 hp can be dropped from that station
at a sacrifice of only 40 bbl/hr. Note also that gasoline has
been introduced upstream and has filled the first segment,
requiring—that 1,000 hp be added at sfaiion 1, of which a.

. large part is throttled away.

In -16, the propane is approaching the terminal. The 600-
hp unit in station lhas been dropped and segment 2‘is contiolr
ling, 130 psi being throttled there. Flow is 2849 bbl/hr.

As the gasoline approaches station 3 (shown in -17), segment 1
takes control. The upper line shows the profile that would
obtain if all three pumps in station 1 remained on line. The
entire pressure contribution of the 600-hp unit would be
throttled away, 239 psi at station 1 and 145 (1504 down to
1359 psi) at station 2. Accordingly, that pump is switched

off without loss of flow, and segment 2 assumes control.

Figure -18 simply shows the'profiles when the linefilll
is all propane. With its lower density, the full head with
all units pumping never exceeds allowable line pressure. The
last 600-hp increment of power at station 1 gains 120 bbl/hr
of flow. '

Figure 4.3.6.1.2-19 shows how the actual unit power cost
varies with throughput. Disregarding flows less than 1000
bbl/hr, below which the demand change dominates, . it is seen
that for a factor of 3.2 in throughpﬁt, i.e., 1000 to
3200 bbl/hr, powér cost rises by a factor of 4.4, or approxi-
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mately as the 1.28 power of the flow. Figure 4.3.6.1.2-20
shows barrel-miles and power cost in cents/barfél mile for the
15-month period of the study.

The throttling pressures are plotted in Fig. 4.3.6.1.2-21
for the full-capacity profiles, -8 through -17. 1In the upper-
most plot of energy wasted at the terminal, it has been assumed
for simpiicity that pressure up to 15 psi could be used in moving
the product to storage, but that any pressure above that value
represents wasted energy. Since the times between the successive
figures are roughly the same in each instance (5-6 hr), if the
operations are continuous, then these pressure profiles are -
.approximately equivalent to time traces of the energy wasted per
unit of flow. It is clear that the energy wasted in typical
operation is not insignificant.

4.3.6.2 Fuel Cells with DC motors

The reader will have anticipated the
principal conclusion of this section: direct-current motors,
with their capability for infinitely variable speed control,
offer a means to avoid the throttling waste discussed above.
They are not used, of course, because of the expense of the
converter to convert the AC power provided by electric companies
to DC. But the fuel cell is a source of direct current and
thus is compatible with the variable speed DC motor. It will
be recalled that the fuel cell development programs that were
described in Section 4.3.4 above included the development of
an inverter to convert the fuel cell DC current to AC. If
fuel cell development is justified for the electric utility
situations which require the inverter, then it should be even
more attractive for the pipeline application where the inverter
is not necded. Qualitatively at least, one can say that pipe-
line service offers one the most attractive application for
the initial demonstration and commercialization of large fuel

cells. To render this statement gquantitative requires some
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discussion of the economics of pipeline energy consumption and

of prospective fuel cell efficiency.

Referring again to Fig. 4.3.6.1.2-21, it has been observed
that the abscissa also roughly represents a time scale, if the
operations described'above'are continuous, with each spacing
representing approximately six hours. A further step in the
analysis would bg to calculate these time steps exactly and
convert the throttling pressures to horsepower and replot the
results, giving time profiles of power wasted at each station.
Integratibn of.tﬁese curves would then yield the energy wasted.
However, for this calculation to yield an estimate of the
energy actually wasted in the industry, it would be necessary
to write a computer program, characterize each pipeline indi-
vidually, and input that data, along with the full-year duty
cycle of each pipeline into the computer, a task which is

clearly impractical.

A very rough estimate of the energy wasted may be developed
in the following way. The total operations expenses of the ‘
105 interstate o0il pipelines in 1974 was $357,122,000. The
ICC statistics do not further subdivide this figure, although
in the individual company reports the cost of fuel and energy
is reported. Reference to a few of those reports reveals that a
figuie of 40% for that cost; fuel and energy is not atypical.

If that figure wefe valid, the energy cost for all companies
would have been approximately $140 million. For the set of
full capacity profiles presented above in Figs.4.3.6.1.2-~8
"through -17, the average throttling head loss is approximately
6 to 8%. If this fraction were valid nationally, the total
wastage would be around $10 million annually. This order of
potential saving is clearly enough to justify a R&D program

of several millibn dollars.
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Another gquestion of course is that of fuel cell efficiency
vs utility electric power. The latter seldom reaches 25% after
all power generation and transmission losses are taken into
account. It was noted in Section 4.3.4 above that fuel cell effi-
ciencies of 45 to 47% are expected in the large second-generation
units presently under development. When losses in conversion and
transport of the fuel are accounted for, the net efficiency of the
fuel cell power sourcé will be reduced somewhat but will still far

exceed the electric utility power source.

It is not suggested that the ready adaptability of fuel cell-
DC motor power sources to pipeline applications is an established
conclusion. Any experienced operator of motorized equipment will
testify =~ to the large maintenance burdens whiéh are imposed
by DC motors. This fact is very important in pipeline opera-
tions, where the motor locations are often remote and/or unattended,
and where round-the-clock service is often required. However,
the potential clearly exists for significant energy saving, and
it is therefore strongly recommended that -further work be done
to define an appropriate R, D&D program for the applications of

fuel cells in pipeline service.
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5.0 SLURRY SYSTEM IMPROVEMENTS

5.1 Technological Status of Coal Slurry Pipelines

The technology of coal slurry pipelines is solidly
established. Slurry pipelines first gained recognition as a
viable method of transporting solids in 1957 when the 108-mile
Consolidation Coal pipeline entered service in Ohio, with a capa-
city of 1.3 million tons/year. This slurry line moved 7 mil-
lion tons of coal from 1957 to 1963, when it closed down, not
because of technical problems, but because of rail rate reduc-
tions for large tonnages. The economic and political forces
involved have been examined under Task 2 of this project, and
are discussed in Section 4.2.1 of Report SSS-77-R-3023 of
this series, "Slurry Pipelines - Economic and Political Issues -

A Review."

The longest and largest slurry system yet built is
the Black Mesa line. The history and description of the line
have been presented [Montfort, 1975] and updated [Montfort,
1977], and are summarized kelow.

Black Mesa Pipeline, Inc., was organized in 1966 to
construct, own, and operate a coal slurry line connecting the
Black Mesa, Arizona, coal field to the proposed Mohave Gen-
erating Station in southern Nevada, over the route shown in
Fig. 5.1-1. Black Mesa Pipeline, Inc. is a wholly owned sub-
sidiary of Southern Pacific Pipe Lines, which operates 2400
miles of petroleum products pipelines. These pipeline
systems in turn are a part of Southern Pacific Company.

This is the longest and largest slurry line yet built. 1In
1967, a 35-year transportation contract was signed with Peabody
Coal Company and engineering design began. Shakedown began in
August 1970, and by November, commercial operation was in pro-

cess.

Black Mesa Pipeline receives coal at a central point

in Peabody's strip mine located on the Black Mesa of the Navajo
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and Hopi Reservations in northeastern Arizona. The pipeline
system includes slurry preparation plant, pump stations, pipe-
line, test loops, control and communication facilities, but
not terminal storage and dewatering facilities, which are part
of the power plant (Fig. 5,1-2). Slurry process water is fur-
nished by the coal company from deep wells. The Black Mesa

system cost approximately $39 million.

Coal is received from the coal company at the pre-
paration plant by a conveyor belt, which delivers 2" x 0"
coal into three elevated raw coal bins. Each bin feeds a pro-
cess line consisting of an impact crusher, a rod mill, a sump
and centrifugal sump pump, shown in Fig. 5.1-3. Impactors reduce
the coal to 1/4" x 0" by dry crushing, and rod mills pulverize
the coal.by wet grinding to 8 mesh x 0. Slurry is formed in
the rod mills,where water is introduced. From rod mill, sump
slurry is pumped into one of four 630,000-gallon storage tanks,
which are open top and equipped with mechanical agitators to
maintain slurry suspension. The slurry is transferred from the
storage tanks by a centrifugal charge pump into the suction of

the mainline high-pressure pumps.

The pipeline system is capable of pumping 660 tons of
coal per hour. At 48% colids by weight, flow is 4200 GPM and
velocity is 5.8 fps. When lower delivery rates are required,
flow is reduced, down to about 5 fps. Any necessary further re-
duction is accomplished by inserting water slugs between batches
of slurry. Transit time is three days, and line fill includes

45,000 tons of coal.

Four pump stations are required. These are sizeable
installations, utilizing the largest piston pumps with elec-
tric motor drives and hydraulic couplings for speed control.
Three stations have three pumping units installed, with one a
spare. The fourth station has four units, with a spare. The

three-unit stations operate at about 1000 psi, and the four-
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unit station at about 1500 psi. Driver horsepower is 1500

and 1750 respectively.

The pipe is 18" diameter and traverses mountainous
northern Arizona terrain with elevations varying from 6500 ft
to 500 ft (Fig. 5.1-1). The last 12 miles drop 3000 ft and
in this stretch, diameter is reduced to 12", The pipe is a
high-pressure steel, welded pipeline and is conventional
except that a 16% maximum slope limitation was observed for
hydraulic reasons. The line is extensively telescoped with
wall weights ranging from .469" to .219". Even though most
of the ditch was rocky, a tape coating system was success-

fully used, with extensive dirt padding.

At the time of construction, it was not known
whether the line could be restarted after an extended shut-
down. Accordingly, ponds were provided into which the con-
tents could be dumped in case of shutdown.

Early in 1971 the pipeline was shut down twice due to
power failures. Particle size . gradation (consist) was relatively
coarse and difficulties were encountered in restarting sections
of the line. On each shutdown, one hard plug was encountered
and had to be located and removed. Plugs were specific - about
40-ft in length. To be on the safe side, other sections were
restarted and line fills were dumped into station ponds. 1In
the first instance the affected line section was down 4-1/2 days,
but subsequent to removing the plug the section was restarted
without difficulty. The consist was adjusted to provide a finer
grind and since then, numerous restarts have been handled with-
out difficulty. It is not expected that extensive dumping will
occur again. The two important keys to a restartable slurry

are a fine grind and a well-graded consist.
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Pump stations and pipeline operation are supervised
from origin point. Stations, which are complex, are operated
unattended; however, there are two resident employees at each
booster station to perform maintenance and to provide on-call
availability. Pumping is "tight-1lined," i.e., without surge
tankage at booster stations. Locations are linked by a solid
state, hot, standby, microwave system operating at n}ZlOO MHz.
One link of 109 miles involves use of space diversity antennas

to cope with atmospheric fades.

"The slurry is delivered at the power plant into large
(7,800,000 gallon) storage tanks. The tanks, with 500-hp
agitators, though much larger than any such tanks previously
built, and have operated satisfactorily. Slurry is withdrawn
from tankage by a centrifugal pump and transferred to a bat-
tery of 40 centrifuges, where 75% of the water is removed. .
The resulting wet cake is conveyed to 20 bowl mills for drying
and further pulverizing. Dried coal is carried pneumatically

to the combustion chambers.

Fifty-two permanent employees are required to operate
the pipeline. Of these, about 36 are at the Black Mesa pre-
paration plant. The remainder are technical and administrative
personnel located in Flagstaff and at the booster stations.

At Black Mesa, Navajo and Hopi Indians are given employment
preference under terms of the mining lease. At both Peabody

and Black Mesa Pipeline, Indian personnel are in the majority.

The system is operated by a four-man shift at Black
Mesa. The group includes a Shift Supervisor, a Pipeline Op-
erator in the System Control Room, an Operator-Repairman
handling preparation plant and other facilities, and an Op-
erator-Repairman Assistant primarily doing slurry quality

control testing in the Testing Laboratory.

It has been noted earlier that pipelining solids

requires considerable testing to determine minimum operating

5-7
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velocities with respect to deposition or bedding and to assure
good restart characteristics. Varying the percent solids and
the size consist affects these important operating characteris-
tics. High capacity test loops are useful here, and Black
Mesa has several well instrumented loops, including one 1000'
loné and 24" in diameter. After determining the desired
specification, it is necessary to monitor carefully to assure
that specification is consistently met. Percent solids or
density is extremely important and is monitored by a nu-
clear density meter mounted outside the pipe. Size consist
must be laboriously obtained by sieve analysis run every hour

or two.

The slurry is sometimes corrosive and requires some
inhibitor. Water batches especially require use of an inhibi-

tor. Careful corrosion monitoring is necessary.

While the pipeline can be shut down and slurry
allowed to settle, pump cylinders and valve chambers as well
as convolved station piping must be promptly flushed upon shut-
down. The slurry tends to pack into dead spots except for those
on top of the pipe, which affects valve selection. A conven-
tional gate valve will not function well in slurry service.
Ball valves and lubricated plug valves seem best suited for

s lurry.

Wear is a continuing process in the mainline pumps.
It is of course to be expected, and is therefore not a problem.
"Valves, seats, pistons, rods, -and packing are expendable. How-
ever, these parts have met and, in most cases, exceeded expected

service life.

The system has successfully completed more than six
years of operation. While the line is capable of transporting
over 5 million tons of coal per year, it has actually averaged
only about 4 million tons per year because of lesser burn re-

quirements at the power plant. Pipeline availability has
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exceeded 99%. The plant engineer at the Mohave Generating
Station reports that, of the three major subsystems, coal mine,
pipeline, and power plant, virtually all system downtime is
due to either the mine or the power station. The pipeline "is

always running."

Because minimum operating velocity and design through-
put velocity are fairly close together, the pipeline has a
relatively small turndown. When the power plant requirement is
less than pipeline turndown, batching is neceSsary and a dis-
patching model has been just as useful in this application as
on a petroleum line. Flow is measured in gallons per minute
using magnetic flow meters and by timed stroke counts. Gal-
lons per minute and tons per hour are related by specific

gravity of solids and percent solids.

In closing, it is well to mention planned future
systems. The line that is in the most advanced planning stage
appears to be the 1036-mile pipeline of Energy Transportation
SYstems, Inc. (ETSI), owned by Bechtel, Lehman Bros., and the
Kansas Nebraska Natural Gas Co. The proposal to build this
billion-dollar lihe has evoked strong opposition (see Report
SS8S-77-3023 under this contract). The issues may not be
fully fesolved until the results of a coal slurry pipeline
study, approved by the Congress Office of Technology Assess-
ment in July 1976, are available. The study, scheduled for
completion in mid-1977, will cover technological, energy, and
legal issues; environmental effects (especially water and land
use); evaluation of costs and returns; and impact on the rail-
roads.
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5.2 Methanol-Coal Slurries

A promising new concept in coal slurry technology
which appears to have potential for overcoming some of the pro-
blems and limitations associated with .coal-water slurries is
the methanol-coal slurry,system. Leonard Keller, President of
the Methacoal Corporation, Dallas, Texas, holds patents, includ-
ing Ref. 5.1C, relating to the methanol-coal slurry, which he
calls Methacoal. He describes Methacoal as a pseudo-thixo-
tropic, or shear-thinning, mechanically stabilized suspensoid.
At rest it appears to be a moist, solid mass of black mud, but
when subjected to stirring or agitation, it becomes thinner
and flows easily. The flow characteristics are such that it
is typified viscous or laminar flow, rather than the turbulent

flow characteristics typical of coal-water slurries.

5.2.1 Methanol Carrying Capacity

5.2.1.1 Experimental Measurements of Carrying

Capacity

It appears that methanoi has some-
what greater carrying capacity than water. To acquire some
first-order verification of this hypothesis, as a part of
this project rheology tests were conducted under subcontract
by Prof. R. R: Faddick of the Colorado School of Mines. His

report is condensed and summarized below. .

In conjunction with rheological tests, additional bench
tests are necessary to determine s0lids specific gravity,
solids screen analysis, density and viscosity of the liquid
carrier and, where coal is concerned, a proximate analysis.

A Western coal was selected for which all this information
was readily available. A relatively fresh, unused sample of
Utah coal was available in the Rheology Lab from a previous
study.

Three concentrations of coal, from maximum possible
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down to -5%, -10% from maximum were studied at room tempera-
ture. Commercially available methanol was used with one

particle size distribution of coal.

Rheology is the science of the flow deformation of
liquidlike substances subjected to shearing stresses. These
stresses are measured over a range of shearing rates. The re-
sulting relationship of shear stress vs. shear rate depicts |
the flow deformation characteristics of the slurry for a
' specific solids concentration, size distribution, and tem-
perature. These data, when plotted, form the slurry rheogram.
The slope of the rheogram is called the dynamic, or absolute,

viscosity of the slurry.

Newtonian liquids, such as water and most hydrocarbons,
béar a linear shear stress-shear rate relationship, the slope
of which is a constant. The deviation of the slurry rheograms
from linearity is a measure of their non-Newtonian character-
istics or variation in viscosity with shearing rate. Trans-
lated to pipeline flow, this means that the viscosity of the
slurry varies with the flow and is not a constant as it would

be for a Newtonian liquid.

The purpose of the rheology meausrements, then, is to
determine a slurry's shear stress-shear rate relationship. A
mathematical model of the shear stress-shear rate curve (rheo-
gram) 1is then defined, and this model is used to predict
slurry friction head losses for pipe flow. The model may also
be used to scale actual, measured, pilot loop friction losses

to pipe sizes other than that used in the loop.

The rheclogical measurements were made with a Brookfield
Model RVF viscometer over a range of slurry concentrations
and at a temperature of 25°C. The slurries were placed in a

blender jar containing a heating coil which was connected to a

5-11
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constant temperature bath. The viscometer spindle was lowered
into the slurry, which was then agitated as necessary to sus-
pend the solids. With the blender off and the slurry in a
quiescent state, the shear stress-shear rate relationships

were obtained. Measurements were made with both ascending and
descending spindle movements, and all measurements were reneated
four to eight times. Yield stresses were obtained by record-
ing the sﬁatic torque reading when the spindle was allowed

to come to rest in the slurry.

A three-parameter yield-pseudoplastic model was fitted
to the data. This model does not fit all of the rheology
data as well as a four- or five-parameter model would, but
it is much easier to deal with mathematically. The model |
was adjusted to fit the rheology data over the range of shear

rates to be encountered in the prototype pipeline operation.

The model selected was a yield-pseudoplastic having the

form

where

shear stress (dyne/cmz)

o
n

L. = yield shear stress (dyne/cmz(TAUY)*)

= flow consistency indéx (dyne-secn/cmz(KYP)*)

K

shearing rate (sen_l)

SEESY
I

= flow behavior index (dimensionless (NYP)*)
(*Computer notation, used in Fig. 5.2.1.1-1)

Utah Carbon King coal from Braztah Corp. in Helper,
Utah, was crushed in a laboratory-type hammermill (Holmes)

in several passes.

Specific gravity (measured) = 1.4294 @ 25°C

Moisture content - 1,16%
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848,14

" 1047.0

1266,9
1507.7

109.9
195,4
305,4
439,7
598.5
781.8
989 .4

1221.5

1478,0

1759, 0

125,86

223.,4
349.0
502,86
684,90
893%,5
1130,8
1396.0
1689,2

. 218.1 .

376.9. .

NUMBER.

455.
..523,
584,
639,
689,
735.
779.

aée.,
897,

637.
733.

. 818,
894,
965,

.. 1030,
1794,
1149,

1204, .

1256,

83e8.
965,
1077.

1270,
1356,

1437,

1513,
1585,
.. .- 1654,

1”5&.
1218'
1359.
1486,
. ....1603,
1714,

1813.
1909.,.

2001,
2788.

1294,
1492,
1663,
1R18.
1961,
2094,
2484,
2616,
2741,

820. ..

L4178,

FH
MIX

10N0Q
P00
0000
0009

0000 .

00090
0000
10000
2008
'0p00

0000

10000
020n
0000
000
0000
2000
2000

+0000

10000

1890p
0000
P00
10009
a1
2003

0000

P00
00089
21l

'”ﬂﬂﬂ.

N80
L)
2000

00

0009
2000
0010Q
WBOMY
D00y

LI

200N
0090

T L 000p

.ﬂﬂnﬂ
Q00p
467
10455

2449 -

PS1
M1

182,92¢

.119,5¢7 .

86,049
65,778
.52,4¢4
43.0¢8
36,2%4

- 31,854

26,978
23.776

132,991

. 95,6%4 .

73.4%1
58,284
. 47.878
40,224
34,454

26,3¢0

222,044
145,115
104,345

..... 79,714 .

63,456
52,197
43,8¢2
37.976
32.647

. 28,732 .

239.121
156,218
112{313
85.827
. 68,324
56,149
47,181
40,359
35,129
38,879

254,956
166,523
119.7:2¢
91,4¢5
72.847
59,764
77.9¢%6
69.0:24
61,826

203,465

29,963 .

KILh-HR
TONSMI .

244465

2.2100
2,16%6
2.,1281
2,151
¢,2885
e.e758
2,2659
2.2560

h.0;1966A‘."

2,3246

. 2,2335

2.178s
2,1423
2.1169
2,2982
90,2844

€,0731 . _
2,643

£.3%420
2,3342
2,2547

B.1946_ .. _

2.159%¢0
241273 -
£.4070
2.2917
2.2797

e,9837
2,3813
£.2744
2,209s
2,1668
2.1371
22,1152
2,2986
7.2857
2.€754
£,6224
,4069
2.,2922
2,2233
2,1778
€.14%9
2,1903
2.1685
2,1509

€,2918 . . ...

2,781

Fig.5.2.1.1,p.4
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1
H
3

ngrre Luamen Dt

LT-S

. DIA

IN,
i 24,0C7

6,979

. 8.000
! 10, ¢e0
12.004

14,0¢0

16.000

18,0249

20,000

22,007

24.900

6.0090
8.pu0

12 .0u
! 14,000
16,000
16,009
. 28,pen
22,929
24.090

6,029
8,090
10,008
12.00n
14,000
16,300
18,099
20,09
22,009
24,000

s

5,030

8,037
13,0800
12,004
14,000
16,039
18.¢00
23,040
22,200
24.a00

6,009

8.000
12,099
12,9490
14,009
16,009
18,000
23.00¢0

18,0090

RELRUF

E/DTA
p,3ue07

2,00033
2,014022
0,07018
2.22815
0,23843
0.07011
n,0301"
0,04349
2,%¢0CR
2.2:007

3,d930C
f,07p22
0.AW01A
8,77015
0,92013
0,02011
005”010
9,2:1929
B.722208
9,203n7

2,993
0.,23222

?.00018

G.@“Gls
2.79013
A,2011
2,001
0,91299
2,0:5008

9,@2007

0.72039
0,00022
2.7¢018

0.042145

2,02013
9,011
0.,020490

0,20¢309

2,290¢8
2.090¢7

2,003
0,719222
0.6:30418
P,00015
0.41043
2,01011
DeRraLs
9,0i0u9

vCL
FPS
7.03

11,02
10.04
9.34
8.890
8.37
8.22
7.72
7.46
7.23
7.03

11.02
1e.04
9.34
8.89
8,37
8.02
7.72

- 1446

7.23
7.083

11.02
10,04
9.34
8.80
8.37
8.22
7.72
7.46
'.2023
7.83

11.02
10.04
9.34
8.83
8.37
8.02
7.72
7.46
7.23
7.03

11.02
19,04
9.34
8.80
8,37
8.82
7.72
7.46

veT VLCTY THROUGHPUT REYNOLDS

FPS FPS
10.77 8,80
16,89 9,00
15,39 9,¢0
14,341 9,094
13,49 9.00
12.83 9.00
17.28 9.09
11.82 9.20
11.43 9.8%
11.98 9.0C
19,77 9,00
16.89 19,00
15,39 12,80
14,31 1p.,e”
13.49 10,092
12.83 10.00
12.28 10,00
11.82 1g,00

11,43 _ 10,00

11.78 10,00
10.77 1g.00
16,89 11,00
15.39 11,00
14,31 11,99,
13.49 11,00
12.83 11,00
12.28 11.00
11.82 14,00
11.43 11,04
10,77 11,00
16.89 12,00
15.39 12,00
14,31 12,90
13,49 12,09
12.A3 12,90
1?.?8 12.%”
11,82 12.00
11.43 12,00
11.78 12,09
17,77 12,8
16.89 13,00
15,39 {3.0¢
14,31 13.00
13.49 13,00
12.A3 13,00
12.°28 13,40
11,82 13,00
11,43 35,00

TONS/HR
2010.3

141,3
251.3
392,46
~565,4
769,6
1705,1
1272.4
1578.5%
1900,3
2261 ,6

157,14
279.2
436,3
628,2
- 855,14
1116,8
1413,5

L A745,0 0
2111,5

2512.8

172.8
307.1

. 479.9

691.0
940,86
1228,5
1554,8
1919,5
2322,6

2764,4

188,5
335,08
523.5
.753,9
1026,
1340,2
1696,2
2094,0
2533.8
3015,4

2P4,2
363,@
567.1
816,7
1111,6
1451,9
1837.%
°248,5

HUMARER
2861,

.1546,.

1780,
1986,
2432,
2623,
2801,

. 2967, .

3129,
3274,
3417,

1813,
2087,
2608,
2852,

. 3a7e6.,

3284,
"3479.

L3664,

3839,
4006,
2093,
2699,

N L

3293,
3552,
3792,
4017,
4230,

4433,

4626,

2673,
In78.
3434,
3755,
4“5“0
43?40

4581,

4824,
5255,

5276, ..

JeLs.
3473,
3875,
4237,
4570,
4880,
5170,
5444,

D366 146,657

€i2376 oo

M PS1 KILW_HR
MIX M] TCH-M
0442 55,914 £,1365
0000 269,877 . €,6587
0000 176,229  2,4302
10468 149,127 2.,3640
+945% 124,777 £,3046
10446 106,958 £.2611 ]
0438 93,379 . .2.,2279 . .
LW Pa3y n2,71¢ 2,2019
2425 74,121 2.,1829
Pe00 283,885 22,6929
P99 . 185.4¢7 22,4526
0454 216,271 2,927y
0444 175,222 2,4277
8433 146,669 2.358%.
10425 125,768 €,3074
18417 109,8¢5 £.2682
LeP411 . 97,343
12408 87,297 2,2130
«Banp 78,971 £,1928
10080 297,270 2,72%6
P452 323,921 . £,7987
2B4a36__250,377.__ 2,634 _ .
19425  202,9%1 22,4994
12497 145,813 | 2,3559
0400 127,383 2,3129
0394 112,863 £,2796
y0388  10M1,220 _@,247%
10383 91,628 2,2297
"10454 516,266 1,2601
0434 372,340 2,9040
10420 286,405 22,6991
0408 232,251 . £.5669 .
P399 194,589 2.4790
0391 166,971 2.49076
10385 149,925 . €,3560%
0"379 129n339 ‘213157
2374 115,989 £.2831
4B369 105,€17 2,2563 .
+0437 583.9¢2 1,4254
«0419 419,164 1,291
8405 324,31¢ 22,7916 -
0394 263,085 2,6422
y 0385 220,461 £.5382
0370 189,247 2.4619
0372 165,479 2.,4037
2,350

Fig.5.2.1.1,p.5
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D1a
IN,
22.099

"24.000

6,010
8.000
10,0290
12.08%9
14,007
16.000
18.020
20 000
22.000
24,000

6.927

8,289
10.0¢a
12,069
14,000
16.0a30
18.049
20.000
22.000
24.,0¢0

2D
8.0400
12.000
12.0049
14,240
16.000
18,900

29,700

22,940
24,004

RELRUF

E/D1A
0,00986
3,2u007

2.2¢030
€,23022
2.0018
€,21015
2.,%1013
¢,c0011
2,20019
¢,0n929
@,000n8
8,20007

a,ee3n
8,2v022
0,2"018
0,09015
0.,0:013
0.00¢11

0,0:2317

8,20¢09
A,"008
8,97@87

D.G*a30
B,20922
2,00018
3,00¢15
2.727013
2.24011
2.2484€

2.,74029.

2.00008
3,0u007

vCL
FPS
7.23
7.03

11.02
10.04
9.34
8.80
8.37
B.02
7.72
7.46
7.23
7.93

11.902
10.04
9.34
8.86
8.37
8.02
7.72
7.46
7.23
7.93

11.02
10.04
9.34
8,80
8.37
8.02
7.72
7.46
7.23
7.03

vc?

FPS
11.¢8
10,77

16,89

15,39
14.31
13.49
12.83
12.28

‘11.R2

11.43
11.08
19,77

36,89 .

15.39
14,31
13.49
12.83
12.28
11.82
11.43
£1.78
.77

16,89

15.39 ..

14,31
13,46
12,83
12,268
11.82
11.43
11.08
10.77

VLCTY THROUGHPJT REYNOLDS

FPS
13,09
13,00

14,00

14,00
14,00
14,00
14,00
14,00
1‘.””
14,00

14,09

15,00 -..

15,00
15,00

15,00

15,04
15,00

15,00

15,00
15,80
15,00

16.09

16,0¢ ..

16,02
16,00
16,09
16,00
16,00

16,00

16,00

16,00

TONS/HR
2744,9
3266,7

219.9
3908.9

610,8

879,5
1197,1

1563.5 .. ..

1978,9
2443.0
2956.,1
3518,7

418,48
654,4

942,13

1282,6€
1675,2

2120,2.

2617 .¢%
3167,¢2
3769 ,2

251,32

698.,0
1005,1
1368,1
1786,9
2261,
2792.,8
3378.4
40920,%

235.6.

L.446,7

NUMBER
5704,
5953,

3373,

3sa4.,
4334,
4739'
5111.

5782.
6088,
6380,
6658,

. 3744, -

4311,
4809,
5259,
5672,
6056,

. 6416,

6757,
7080,
7389,

4127.
4752,
5302,
5797,
6283,
6676,
7e73.

.. 1448,

7804,

5457...

FM

HIX

18361
10357

423

10405
0392
1A381
18373

0366 ..

10360

M358

0350
10345

0410
1N393
0380
0370
0362
M358

40350

10345
10340

.eP338 .

10399

10382

0370
0360
19353
10346
18344
20336
10334
0327

", PSY

Ml
131,545
119.121

654,937
472,340
364,852
295.421
247,6%9

212,635 ..

185,871
164.821
147,878

133,924
729.8¢9 ..

523.823
405,569

329,229

276 .,0¢8
237.0¢55

207,275 . .

183,842
164,949
149.412

806,324
579,572

448,908
364,482

305,667

262,%47
229,602

203,678

182,7¢4
165,574

KILW-HR

TOheM]
2,3211
2,299

1,598
1.,1480
2,8886 -
g,7211
g,6045
2,9190.
2.,4537
22,3609
£,3269

4.77§b-n-um‘

1,2786
e,99¥%p
2.,8036
2,6739
¢2,5786

2,4487
£,4026
2,3647 .

1,96814

104447 L

1.2957
2,8897
£,7462
2,6400
2,%54024

AT e

2,446
g,4044

245059, .

Fig.5.2.1.1,p.6
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FAUR "ATA POLITS

NP S N PR

B . SLURRY: SSI UETHACOAL (63.7%) 3-12-717 - , ‘
b ' 1 RC(CH) RS(CM) RATCI) LNCRATCID) CW(X) CV(X) TEMP(C) S SL TAUK(I)  SH  YIELD(DYNES/CM/CM)
1%

2 4,0000 9,5128: 7,8073 2,¢542 €3.7 49,2 25,1 1,429 0.791 . 0,1407 1.103 2,38

RPM DT1AL STRESS "KEMGAM BROGAM ALVGAM GMEGA LNCOMEGA) LN(STRESS) - TAU=TAUY

~ e, 7.0 49,894.53E+00 3,44 3.42 1.0472 2,0461 3.9099 STRESS » 44,67(0MEGA )es D,610 R =2 0,99088 47,55
29, 8.9 63,049.n6£+00 - 6,87 6,87 2.0944 04,7303 4.1438 STHESS = 18.2B(KENGAM)ee B,610 R = 04,9958 60,70

50. 16.8 119.402.26E+01 17,19 17.47 5.2360 1,6556 4.7823 STRESS = 21.63(BROGAM)e®s 0,610 R = 04,9908 117,04

s 21,65(ALVGAM)#e 0,610 R = 79,9988 194,60

< 160, 27.7 196.944,53¢+pt 34,37 34,3310.4728  2,3487 35,2829  STHESS
K= 21,64 N = 2,610 KkYP = 2p,22 NYP = 0,626 RYP = #,994p

6T-S

Fig.5.2.1.1,p.7




| g

SYSTEM PROPERTIES

MINERAL =-- SS1 METHACOAL (63,7%)

AVERAGE SOLID SPECIFIC GRAVITY (S )
LIQUID PHASE SPECIFIC GRAVITY (SL)
SLURRY . .SPECIFIC GRAVITY (Sn)

SLURRY CONCENTRAT]ON gy WEIGHT

SLURRY CONTCENTRATION gy VOLUME

ABSOLUTE PIPEWALL ROUGHNESS (g), FLET
GRAVITAT]IOMAL ACCELERATION

SLURRY TEMPERATURE (TEMP), DEGREES CELSIUS
PIPE TYPE

PIPE SLOFE
MESH PERCENT
0,0u7/100 #.30
170/20¢ 13.70
2411/325 65.60
325/PAN 2¢.40

TOTAL = 100.9

WEIGHTED MFAN DIAMETER =5,8349E=-02 MM
COEFFICIENY OF "VARIAT[ON = 44,68801
DRAG COEFF OF WEIGHTED MEAN DIA = 221,865
REYNOLOS NUMRER OF SETTLING = g.11

- -

THRQUEHPUT {TONS/HR) 3 SHORT

3-12-77

1,429
2,791

1,105

@,637

0,492

p,00015000 )
32.1573 FEET/SEC/SEC
25.14

HORIZONTAL

SETTLING REGIME = LAMINAR
VISCOSITY FACTOR = 1,0

ROSIN - RAMMLER EQUATIONY R = 100 ® EXP(-(D/

0,068649) *s 2,585615)

SLOPE = 2,585615 ..  INTERCEPT D .3 0,068649083408 MILLIMETERS .
CORRELATION cncrr.\f 0.965528 050 = 0,06 MILLIMETERS
KYP = 20,22 ‘NYP = 0.626 TAUY = 2,345
SH THECQRY
PH = N.A,

Fig.5.2.1.1,p.8



LTIETRAX

[

Dla RELRUF vCL

IN, E/D1A  FPS
6.009 2,0223" 42.47
B.033 2,00022 10.94
10,030 2,7¢918 9,88
12,050 0,24045 9.09
14,000 0,00813  8.47
145,000 0,04041 7.97
13,000 92,0731 7,56
23,999 0,09009 7.2
22.000 0,00008 6.90
24,007 0,290087 $.63
4,000 0,00030 12,47
8.,¢pn 2,000822 10.94
10,000 0,0¢018 _9.88
12,000 0,23015 9,29
14,000 0,29013 B8.47
16,00¢ 0,07011. 7.97
18,000 08,27915 7.546
20,000 2,27°099 7.20
22,000 0,2°@28_ 6.90
24,000 90,7407 4,63
6,908 0,02037 12.47
8.300 0,2.022 10.94
10,7200 8,72¢048 9,88
12,000 0,00015_ 9.09
14,9002 9,60013 8,47
16,000 0,7301L  7.97
18,490 8,45010 7.56
20,400 0,23929 7,29
22.000 0,22908 6.90
24,000 0,€30¢7 6.63
6.000 0,27032 12.47
8.062 0,71922 10,94
10,820 2,33018 9.88
' 12.000 0,320845 9.09
T14,003 0,099013 8.47
16. 000 8,7301Y 7.97
18.000 3,37013 7,56
20.08) 0,20009 7.20
22.400 9,99048 6.90
24,009 0,220807 6.63

6.000 0,33030 12,47

8.0060 0,93022 10.94
10.000 0,3.9018 9.88
12,000 9,924015 9.09
14.0“@ 0.33%13 8-47
16.,0v4 0,34011  7.97
18,400.0,0:010  7.56
20,000 @,37°069  7.20
22,00 0,24918  6£.90

verT
. FPS

19.93

17.48
15.79

14,83

13.55 .

12.75
12.08

11,51 .

11.02
10.5%9

19.93

17.48

15.79 .

14,53
13055

12.75—

12-“8
11-51

11,02

10.5%9

19.93-

17.48
15.79
14,53
13.55
12.75
12,78
11.51
11.72

10.59

19.93
17.48
15.79
14,93
13.585
12.7%
12.78
11,51
11.92
10.99

iblqs h

17.48
15.79
14.53
13.55
12.75
12.08
11.51
11,82

VLCTY THROUGHPUT REYNOLDS

FPS

4,00

4,00

4,00
C 4,00
4.0“
4,M
4,00

4,00
4,09
5.49
5.0(11
5,00
5.69
5,28
. 5.06
5.00
5,00
.5,00
5,073

6,00
6,00
6,00
6,00
bCez
6,29

4,00 .

6,09

6.90
6.00

7.00
. 7,00
7.69
7,00

NI

7.0
7.9
. 7.02
7.084
7.09

829
8,09
8,24
8,0
8.27
. 8,04
8,89
8.0y
8,0

.6.00

TONS/HR _  NUMBER _
61,9 440,
113,41 527,
172,14 607,
247,8 680,
337,2.._. ..749,
440,55 814,

638,2 . 936...
832,8 994,
931.9 1049,
77,4 598,
137.,6 717,
215,41 __.. 824,
3e9,7 924,
421,55 ' 1017,
550,46 ° 1106,
696,8 1191.
a60,3 1272,

..1C40,9 13549,
1238,8 1426,
92,9 189,

165,2 921.
258,14 1059,
374.6_ .. 1187, ..
505,8 1307,
60,7 1424,

. B36,2 . 1532,
1932,3 1634,
1249 ,14 1735.
1486,6 1832,

108,4. . 950,
192,70 1138,
301,14 1308,
433 .6 1467,

_990,2___ . 1618, .

770.8 .1796.
975.6 1899,
1204,4 2019,
1457,3 2339,
1734,3 2472,
123.9 1141,
220,2 1367,
344 .4 1572,
495,5 1762,
674.,5 1940,
880,99 . 2302, .
1114,9 2478,
1L376.5 2647,
1665.5 2810,

FH
MIX

003¢

8000

+PA0p
Pang
12000
10030
A00n
2000
20ag
Wl

+ 0009
00
7009

. 000

0000
1 209g
10000
0000
12000

~+009%0 -

+000p
O0nap
200
12009
200y

Ppfg
JRodg

000
2000

19000

19000

L0000

0000
+2000

19000 .

00020
0000
+ 2000
0474
10463

yPO0Q

0000
10003
N d4Ld"]
10000
10474
10463
10453
1P445

P3S1
Ml

184,843

116,035 -

8¢,827
6%.22%

46,915

37,775
31,2¢7
26.,3¢e8
22,622
19.6¢2

212,262
133,129

2,9255

.92.828 .

69,066
53,829
43,4¢%
35,829
J0.2z8

..25,939

22,561

237.7%4 .

149,122

103,827

W 175350,

62,269
48,562
.48,190
33,824
29.0e7

261,617

. RaQ642 _ L.

KiLWoHR
TOoH-M]

2.4876
2,2873
g,2004
2,149
g.1161
2,2938
2,774
ﬁ.2653___< - e e @l L e i e
2,2360 : ! ’

2,2487

“2,3296 .
212?90_. U . - e e a e el
2,171 :
€,1333 o

g,c887

2.2748"

2,95859

£.5886
g,3692
2.2579
£,4915 .
g.1492
2,12082 '

PR - e e e e e e
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114,297
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66,326
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37,224
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284,268
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92,421
71,966
69,471
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’z |1641-.._. . e e s ——e e em
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P06 L. e e e e - R,

2,847 ‘

.4062
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2,2922
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2,3774 ‘ . o e e
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13,00
13.94
13.0°
13,89
15,00

_ TONS/HR
1982,1

139,4
247.8
387.1
557.5
758,8
991.7

... 1254,3 .

1548,5:
1873.7
2229.,9.

154,9

e 275,20

430,14
619,¢
843.1
1101,2
1393.,7

..-1720,6 .

2001.,9
2477.6

170.3
302,8
..47.3.2
681,38
927,¢
1211,3
1533.2
1892.86
..2290.,4
2725,4

185.8
330.3
516.2
743.3
1011.7
1321.4
1672.4
2064,7
2498.3
2973.14

" 201,3
357.9
559 .2
8M5.2

1096 .9

1431.5

1811.8

2236,7

NUMBER
2967,

... 43420

1607.

. 41848,
2489.
2776,
.2913.,
3112,
3303,
3488,

1551,
.—--4857,
2330.
2611,
....2876,
3127,
3366,

38i7,
4231,

1768,
2309,

.. 2686,
2977.
3279,

.. - 3564,
3837,

. 4099,

.. 4354,
4595,

1992,
2602,
2993,
. —. 3355,

3596, _

FM

MIX .

10437

0000
10000
D000
10009
10462
+P45g
10440
D434

D424

aPa17

. «0390

009

-+ 2000,

19472
10456
0442
10434
19424

20413

10406

28399

0000

10474

18454

18438
10428
10414
0408
8397

10384
1Po0a

0457
10437

.+0422

3695, °

- 4g17,
.4323,
4620,
4904,
L5178,

2426,
2905,
3341,
3745,
. 4124,
- 4484,
4827.
5157.

2PN
12409
10391
10384
10377
10371

0467
84472
423
0409
0397
A387
0379
0372

PS1
My
55,086

3IN5,940
191,824
133.5¢7

99,4145 .

126,32¢

- 107,667

-...93,531 ...

82,482
73,626

66,383 .

326,629

204.822 .

223,078
179,316
149,126
127.,19%

118,5¢9%
97,486 ..

87.848
78,507

346,598

338,607

259.166. ..

208,404
173.4¢0¢0
147,914
128,562
113,478
101.3%6

91,428

365,940
388,285
297.3214

239,230 .
199.117.

169,913

.147,7¢4

138,422
116,528
165,145

621,717
44€.585
337.541
271.663
226,242
193.122
167,964
148,327

KILW<HR"
TON~M]
£.1364

,2|7574n
2.,4790
2,3327

2,246
2,3127
2,2665%

2,235 .. ...

2,2042
£,1823.

R.,1643

2,8086

2,9071 . ..

2.9%23
£,4439
2,3492
2,3148
2,2736

£,2413

2,2455
2,1944

2,8589
2,8383

2.,%159
£,4293

2.3662

2,3183
22,2809

.2,2909

£.2264

22,9059
2,9612
2.7360
£,9922
£,4929
2,4206
2,3658
2.3229
2,2885

. 2.2603

1,9394
1,C9¢p
2,8356
2,6726
2.9601
2,478y
g,41509
22,3872

2,0416_
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Fe€ ° ‘rour paTa POINTS , ,
N - SLURRY:  SSI PETHACOAL . (59.2x) . . ~3-12-77.... _ . T : . P
| . I RC(CM) RS(CM) RAT(I) LNURAT(I)) CW(X) CV(X) TEMP(C) S SL TAUK(I) 'SM' YIELD(DYNES/CM/CM)

g ) 1 4.0000 90,9421 4,2458 1,4459 £9,2 44,6 25.9 1.429 @#.79% ©,5814 1.076 7.28

"RPM DIAL STRESS KEMGAM BROGAM ALVGAM OMEGA LN(OMEGA) LN(STRESS) R RTALY

59,65(0MEGA )es 0,391

c 10, 32.6  5£,049.68E+00 5,36 5,36 1.0472 09,0461 4.026p  STRESS = R = 08,9785 48,76
20. S1.1  B87.961.94E+01 10,72 10.72 2,0944_. 0,7393 4.4769  STRESY ¢ 25,P1(KEMGAM)es 0,391 R = 0,9785 80,68 .
5@, 68.7 11E,204.84£+01 26,81 26,79 5,2360 1,6556 4,7724  STRESS = 31,51(BROGAM)es 0,391 R = 90,9785 110,92
- 100, 82,2 141,319.68E+01 53,61. 53,5810,4720  2,3447 4.951  STRESS @ 31,51(ALVGAM)es 9,391 R =.9,9785 134,04
. K s 3151 N 0391 KYP & 25,157 WYP s 2,427 TRYP = 09761 " B . oo e e o
~A( : ’ . A
CLAST THREE DATA POINTS . o o o e
SLURRY: SSI METHACOAL (59,2%) 3-12-77 : :
1 RCCH) RS(CM) RAT(I) LNCRAT(I)) CW(X) CV(X) TEMP(C) - S SL TAUK(1) SM YIELD({DYNES/CM/CH)
‘ . 1.4,0000 3.9424_.4,2458 1,4459 29,2 44,6 25.9 1,429 0.791 B.5814 4,876 . 7,28
RPM DIAL STRESS KEMGAM BROGAM ALVGAM QMEGA LN(QHEGA) -LN(STRESS) TAU~TAUY
10, 32.6 56,049,68£+P0 5,36 . 5,36 1,472 __ 09,0461 . 4.0260 . STRESS = 59,65(0MEGA )s* 8,391 R o 0,9785 48,74 _
B 2%, S51.1 - A7,961.94E+01 10,72 10,72 2.0944  £,7393 4.4769  STRESS = 28,01(KEMGAM)se 0,391 R = 0,9785. 80,68
¢ 50, 68,7 118,204.84E+P1 26,81 26,79 5,2368  1,6556 4,7724 STRESS = 31,51(BROGAM)se 8,391 R = 90,9785 118,92
100, 82.2 141,319.68E+@1 53,61 53.5810,4720_ . 2,3487 4.9519  STRESS @ 31,51(ALVGAM)®e® 0,391 R 5 0,978% 134,04
T K3 31,51 N = 0,391 KYP = 38,36 NYP = 2,317 RYP = 0.9978
N - . * . - . - eeena ... ¢ emmimme—— e . . - e e e e e e e e e P em . . e v me e e aimmenan e a e e s
o>
<
<

: . ' ' Fig.5.2.1.1,p.12



Cr e e = mn e o i rra T, DTt 4 e e e as

SYSTEM PROPERTIES

MINERAL =-- SSI METHACOA. (59,2%) 3-12-77

SPEZIFIC GRAVITY (S )
SPEZIFIC GRAVITY (EL)

AVERAGE SOLI1D
LIOUID PHASE
SLURRY _SPEZIFIC GRAVITY (&)
SLURRY CONCENTRATION BY WEIGHT

SLURRY CONCENTRATIOM BY VOLUME
ABSOLUTE PIPZWALL ROUGHNESS (E), FEET
GRAVITATIONAL ACCELERATION
SLURRY TEMPEXATURE {TEMP), DEGREES CELSIUS
PIPE TYPE . | o S
PIPE SLOPE

MESH PERCENT
p.007/120 @, } '
1007200 13.79
201/325  , 65,60
J3257PAN 20,49

ToTAa. = 100.0

WEIGHTED MEAN DTAMEFER =%,8349E-02 MM~
COCFFICIENT OF VARIATION =  44.,68801

ORAC COEFF OF WEIGHTED MEAN DIA_= 215,939

REYHOLDS NUMRER OF SETTLING = 2,11

Te<e HORTZONTAL

T'THROUGHPUT tTONS/HR)Y » SHORT'

--=- 1,429
~-= 9,791
-==_1,076
-~ 3,592
~=r 0,446

_.r=s @,0001%000

<= 32.1973 FEET/SEC/SEC
~-n 25,9

SETTLING REGIME = LAMINAR
VISCOSITY FACTOR s 1,8

ROSIN - RAMMLER EQUATIONI R = 190 o EXP(~-(D/ 0,068649) »a 2,585615)

SLOPE = 2,585615 . INTERCEP] B =& _@,0686470834R MILLIMETERS . _ . .

CORRELATION COEFF, = 9,985328 - 050 = 8,88 MILLIMETERS
KYP = 38,36 NY? o @.317  TAUY = 7,275
SM THEORY

L PH = NGA,

Fig.5.2.1.1,p.13
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.1332..

1411,
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78,028

. 58,385 .

46,077
37.713
31.724
27,229
23.7%0

18,7¢€2

..119,915..

82,445

.--48.654

39,826
48,202
42,408
37.,7¢4
34.004

30,921

125,649

101,716
83,22¢
72,242
60,655
53,254
47,474
42,762
368.8¢8

217,727
158,584
124.877
101,559
85.,7¢3
74,273
6501Q3
$8.207
52.2%9

20,979 ...

130,073 |

KILW~HR

TCH-NT .

2,2902
. 2.1996
2,1493
2.,1179

2.2965.
¢.2812

2.,2697

2,538
g.2480

2,3104

2,2134

2,1597

2.1260
£,10832
g,e8480
2,745
'Z.ngW

2,513
g.d280a
82,2255
2.,1687

2.1089
g,1324

2,460

£,1033
g.2930

€.8845 .

2.,3437
£,3598
2,2782
2,2276

2,1924

2,1659
2,14%8
243299
2.1170
2.1063

2,5955
2,4338
2.3394
e,2778
2.23%6
2,2026
2,178¢
2,1%87
2.1430

82,1331 _.

2.0608... ... ...

€.2574 .. . ... .
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VLCTY THROUGHPUT REYNOLDS
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12,00
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12,00
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12.90
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13.00

13,08
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13.00‘
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13,09

TONS/HR HMUMBER
.1793,8 4445,
S 126,1 _3492.
224,2 3826,
350,4 4106,
504,5 ... 4350,
686,7 4568,
896.,9 4766,
1135,1° ___ 4947,
1401,4 © 5115,
1695,7 5272,
2818, .. 5420,
140,1 4170,
249,41 4568,
389,3 4903,
560,5 = 5194,
763,20 .. 545%,
996,5% 5691,
1261.,3 5907,
15573 ___ 6178,
1884,1 6298,
2242,2 - 6474.
154,2 4895,
274,1 5363,
.428,2 _ 5756. _
616,6 6098,
839,3 6404,
. 1096,2 - 6681,
1387,4 6935,
1712.8 7170,
__2872,5 7397,
2466,%5 . 1597,
. 168,2 _ 5667,
299,90 6208,
467,11 6663,
e 6727 _ 7060,
915,6 7414,
1195.9 7734,
1513,5 . __ 8m2A,
1868,5 8301,
22690,9 8556,
.2690,7 8795,
182.2 - haBe,
323.9 7104,
586.1 7624,
728,7 8m78,
. 991.9 8483.
1295.5 ARAQ,
1639,6 91864,
2024.2 949R,

M
 MIX
0388

0419
10407
398
18394
12385
10380
0376
18373
10369
0366

10397
10384
10378
«A372
0366
0362
0358

PS1 KILh<HR
M1 TON=HM]
47,513  2,1380

259,615 2,7402

189,211 ©,%17¢6
148,102 2,408
121.2¢6  £,3317
102,424  2£,2802
88,456 £,2421
77,78 _ €,2128.... . . . . ..
69.323 e,1897
62.475 £,1709

304,32 2,8325
221.6¢€8 2,6070
173,718 2,4783
142,269 2,3893
120,218 2,37289
103.853 2,2842

. 91.3% €.,2499

10354

10351
2349

0380

18369
10361
19355
8350
. 18346

18342

8339

0334

81,425 _€.2227 ... .. . ... _..

73,383 e,z0e7
66,739 - £,1826

3514783 e,9622

.120,235 _ 8,3289. . . . . L. S

PR | 0336 . 841963”_2.2324 ——— e

.10364

18354
0347

. 10344

18337
R333
18329
0326
10323
.18324

0351
1342
0329
2325
P32
0317
315

256,558 £,7018
200,941 _ @,Ba97_. __ ... __ ... _.
164,618 . £,4523
139,13 ¢,3888

105,727 e,2892
94,262 ¢,2979

77,280 2,2114
401,845 31,0992

293,174 g.802n
229,672 '£,6283

488,163 €,%148.. . . ... ..

159,052 £.,4351

137,469 22,3761

120,936 ..€,3308. .

107,825 £.2950

97,159 2,2689

88,419 . .2,2419 . .. . .___.

454,543 1,2434
331,664 2,9073
259,858 2,7109
212.965 ¢,%826
182.,04¢ £,4925
155,663 £,4258
136,928 2,3746
122,126 2,3391
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W~ DIA RELRUF V€L  vCT  VLCTY THROUGHPUT REYNOLDS FM  PS|  KILWIHR )
o IN. E/D1A FPS  FPS FPS  TONS/HR NUMBER . MIX ML U TONeny - ) - -
' I 22,460 0.27028 S.65 8,28 13,03 2449,3 9790, ,@312 110,1¢0 €,3n12
« 24,000 0.2¢007 5.,%6 - 8,15 13,00 2914,9 10063, 9310 1P0,1¢3 '2,274¢ “r
o 6,004 @,54038 7.22 10,58 14,00  196.2 7346, 2349 909.801  1.,3945 T T e
¢ 8,007 0,20022 6.83 10,72 14,20 348,8 8@47.. ,B331 372,202 1,C470 P
10.,p00 0.00018 6.5% 9,61 14,00. 545,84 . _ 86387, .B324 291,560 . R£,7976 . S
, 12.002 2,00015 6,33 9,29 14,00 784,8 9151. ,P318 239.021 €£,6538 L
¢ 14,000 P.64013 6.15 9,02 14,00 1068,2 9609, -,M314 202,054 - 2,5528 D
_- 16,000 0.2:811 6,00..3.80 _14,00...1395,2.. 10025, . ,P310..174,749._ . 2,4780. . . e et et e e <t e e
18.000 9,9404C° 5,87 3,60 14,07 1765,8 19406, 8307 153,71 £,4205 .
X 20,040 B8,70009 5.75 3,43 14,00 2180.80 414760, ,D304 137.063 £,3750 )
1 22.000 0,000E6 ° 5.65 3,28 14,00 .2637.8 11090, ,0302 423,602,  2,3384 . _ .. . _ o e .
j(, 24.m00 2,04007 5,56 3,15 14,00  3139.1 11400. ,03720 112,455 2,3076 "
.. 6.000 0.97036..7.22 12,58 . 15,00 .. 210.2._.__ 8250, P329._ 567,575 _ 1,%826.__ _.__ .. .. e e
8,002 8,00022 6,83 12,92 15,00 373,7 9038, ,0321 .414,306 1,1333 :
10,0400 2,60318 6.55 9,61 15,00 583,9 9780, ,M314 324,757 ¢,888% Y
12.2¢0 6,09015 6.33 9,29 1%5,008. © 840.8 ...4i0278.. ,0309 266,246 . ©,7283 . .- .. e
_ 14,200 0,00013 6,15 9,f2 15,08  1144.,5 19792. ,08305 225,1e¢ @,6157
: 16.,0¢7 9,0¢011 6.00 8,80 15,00 1494.8 1125%9. ,0383 194.66¢ 2,%325 ‘)
B 18,020 0,29017 5.87 8.6¢ 19,02 . 1894,9. . .. 11688. ..0298. 374,263 . .€,49685 ___ ___.. ... e .. R
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w : y
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¢ 18.0¢% 0,94019 5.87 8,60 16,00 2018,7 13029. 9298 189,543 2,318% )
- 20,000 0,049009 5.75 8.43 16,208 _ 2494,4 13478, 40287 169,8%2 . 0.,4624 _ . e e ot e e e
22.040 0,%4208 5,65 8,28 16,00 - 3014.,6 13884, ,0285 152,440 £,4i70 .
24,084 9.7¢007 5,56 8,15 14,00 3587.€ 14273+ P283 438,712 £2,3794 ')
C 3
€ D
¢ 3
¢ . J
¢ %)
- , D
. v



- 62-5

FOUR NATA POINTS

SLURRY: SAS1 NETHACOAL (54,6%)
1
] 1

. .- . ¢
RPM DIAL STRESS KEMGAM RROGAM
10. 15.2 26.113.706E404 12,47
20, 16.5 28,336,13£+04 24,95
50. 19.2 33.061.53€«05 62,37
130, 22.3  28,423,.C6E+05 124,73

K e 16.86 N = 2,168 xYP

9 @ ,
maT e e o ’ : L
3-12-77 ‘
RC(CM) RS(CM) RAT(1) LNCRATC(I)) Ch(X) CV(x) TEMP(C) § SL  TAUK(I)  SH YIELD(DYNES/CM/CM)
4,0000 0.9421 4,2458  1,4459 94,6 39,9 26,0 1,429 8,791 ©,5814 1.046 2,32
ALVGAM OMEGA LN(OMEGA) LN(STRESS) ) . ‘ | TAUATAUY
12,47 1,0472 90,0461 3.2623  STRESS © 25,46(0MEGA )ee 0,168 R © 20,9932 23,79
(24,95 2.¢944  9,7393 3.3439  STRESS = 4,53(KEMGAM)es @.168. R 3 90,9932 26,01
62,37 5.2360 11,6556 3.4983  STRESS = 16,80(BROGAM)®e D,168 R = 02,9932 30,74
124,731p.4720  2,3487 . 2,168 R ¢

3.6487

» 14,78 NYP © 0,181 RYP = 8.9937

STRESS = 16,80(ALVGAM)#s $,9932 36,10

Fig.5.2.1.1,p.17
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[

..SLURRY

SYSTEM PROPERTIES
3-12077

MINERAL =-=- SSI METHACOAL (54,6%)
AVERAGE SOLInNn SPECIFIC GRAVITY (S )
LIouIn PHASE SPECIFIC GRAVITY (SL)

SLURRY CONCINTRATION 8Y WEIGHT

SLURRY CONCENTRATION BY VOLUME
ABSNLUTE PIPEWALL ROUGHNESS (g), FEET
GRAVITATIOHAL ACCELERATION

.SPECIFIC GRAVILTY (SH).

SLURRY TEMPEIRATURE (TEMP). DEGREES CELSIUS

ToTAL = 107.4

WEIGHTED MEAN DIAMETER £9,8349E-02 MM
COFFFICIENT OF VARIATION

_PIPE TYPE. )
PIPE SLOPE
MESH PERCENT
0.007/180 0,30 -
100/200 13,72
200/325 65.62
325/PAN 20.40

DRAG COEFF OF WEIGHTED MEAN DA = 215,939

REYNILNS NUMHER OF SETTLING ®
ROSIN - RAMMLER EQUATIONI
. SLOPZ = 2,585615. ..

CORRZLATION CIEFF., 2 g.96¢5528 D50 =

KYP = 14,78 NYP & TAUY =

SH THEORY :
PH = N,A,

--e

-

-

i1
R = 190 & EXP(~(D/
.. INTERCEPY B .5 ...

1,429
2.791

-1,046

0,846

0,399
-0,00015000

32 1573 FEET/SEC/SEC
26.0

HOR!ZONYAL

" THRQUGHPUT (TONS/HR) =
SETTLING REGIME s LAMINAR
VISCOSITY FAGTOR = 1,8 ..

0,068649) *s 2, 585615)
#.063649028348 MILLIMETERS.
2.06 HILLXHETERS

2,322 . .l

Fig.5.2.1.1,p.18
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D,22015
2,00013
2.29011
PCUALD
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vCL
FPS
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"2.96
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2.8
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2.70
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2.96
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2.80
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2.65
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2,89

. 2.84
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2.84.
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2,73
L 2.79
2.67
2.65

3.04
?2.96
2.89
2.84
2.80
2.76
2.73
2.70
2.67

2,87

ver

. FPS

4.34

4.22

4,12
4,05

3.93
3,89

3,85

3'81
3.78

4,34

4,22

4,12

4,75
3-99

L3493

3'89
3.85

3.81

3.78

4,34

4,22
4,12

485

3.99
3.93

3.89.

3.85
3.1

3.78.

4,34

4,22

4,12
4,05

3,99 ..

3,93
3.89
3.85
3,81
3.78
4,34
4,22
4,12
4,725
3.99

3.93.

.89
3.85
J.A1

Par it T LR AT MU R

Fig.5.2.1.1,p.19
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VLCTY' THROUGHPUT REYNOLDS  FM PSI KILWaH
FPS  TONS/HR NUMBER MIX M1 Téh~§xn
4,00 50,2 3958, ,2403 48,869 ©€,1468
4,@2 89,3 4170, ,0397  35,442_ 2,1082
4,00 139.5 4342, ,8392 27,952 . ¢,8855
4,00 20P.8 4488, ,0388 23,284 2,2705
4,00 273,4 4615, ,0384 19,616 2.,2599
4,00 357.,1 4728, ,0381 17,837 g.¢520
4,00 451,9 4830, ,037¢9 15,846 e.,24%9
:.gg_". z;;.o . 4924, .,0377_  13,4¢4 . _g,0411

00 " 75,1 5¢09. ,0378 12,176 @.e372 =~
4, 3.4 5089, ,9373 11,19 £,8339
5,00 62,8 5939, ,0360 66,991 145
5,00 111,46 6257, .9354 49.35; g'fg;g
5,00 174,3 . 6518, ,0349 _ 39.013 _ €.1191
5,00 251,1 6734, ,0346 32,183  2,8983
5.00. 341.7 6925, 0343 27,353 2,2835
5,00 _ 446,3 7095, 0348 23,7¢2 £,2726
5.00 . 564,9 7248, ,0338 20,969 ¢,0641
5,00 697,48 7388, 0334 18,783 2:2574
(5,90 843,8. . 7817, 8335 16,952 . 2,0319.
5,04  10R4,2 7636, 0333 15.5¢%  2.8473
6,00 75,3 8274, 2329 88,241 - 9
6,00 133,9 8717, 9324 65.07%‘ 323383M"'r““‘“'
6.00 209,2 © 9877, L,P320 51,405 2,1570 ‘
6,00___ 301,3 _ _ 9382, _,0316 __42,409 . _C,1295
6,00 T 410,1 9648, - ,P314 36,008 e,i104 T o TrmomTTr
6.20 535.6 9888, ,M312 31,327 2,2957
4.,00 _ 677.,9 . 10@98, 0310 . 27,674 £.,284%
6.00 - 836,9 18293, .2398 24,772 e.,27%6
6,08 1012,6 17472, ,0308 _ 22,407 2,2484
6,70 1205,1 _ 1P639..  ,P305 20,449 __ 2,624
7.00 87,9 1981, .P3P6 111,810
7.0 - 156,2 11538, ,0381 82,437 g:g;};
7,09 244,1 12014, 8297 65,118 €.1989
7,09 351.5 12418, L8294 53,723  2,1641
7.00__ 478.4 _ 12770, . .P292 . 45.6¢7 £.1395
7,00 624,9  13083. ,P293 39.677 e,1212
7.29 790,8 13366. 0288 35,052 2.1070
7 .04 . 976,3 13623, 10287 31,376 g2.2958
7.0 . 1181,4 13861, @285 28,385 0,C867
7.00  1405,9 14m81, (P2B4 25,925 e.2791
8.0 100,4 13981, .P289 137.5¢3 2,470
a,gq 178,5 14709, ,M234 101,395 2:3392
8,07 279,m 15317, 280 80,083 2,2446
8,00 401,7 15832, 9277 66,864 £,2018
8,07 546,7 16280, 4P279 56,171 2 1715
8,00 714,1 16679, .P273  48.802  €.1490
a.ﬂg 903,8 17039, ,227% 43,114 2,1317
8,07 1115.8 17368, 278  38.553  €.1179
8,0 1350, 1 17671, 47269 34,914 e,1066




DIA
IN,
24,000

. 6.900

8. 000
12.004
12,9004
14,0010
16,404

..18.002

20.00¢
22,909
24.909

6.00%

8.209
13.¢02
12,002
14.0092
16,003
18,27
20.¢e%d
24.091

6.002

8,022
10,0982
12,0199
14,000
16,002
18,009
208,200

22,002

24,090

4.000

8.a70
1Q,298
12.044
14,0700
16.00:4
18,008

C29.009

22.000
24.900

6,000
8,002
10.,00%
12,009
14,000
16,060
18,104
20, vy

RELRUF
E/DIA
2.,00097

0.,02337
3,02027
0.27018
g,2221%
3,29013
0,03811
2,00212
2,24009
2.70008
8.00027

2,37930
¢.2u022
g,0018
0,7¢015
0.,02013
PD,2'011
6,00810
¢.,90829
@,03208
0,782u7

2.,2903%)
2.,72022
2,02018

9,04015"

B.0V01L3
2,f72011
2,799010
02,0209
09,0008
2.90027

2,03037

0,70022
0,020D18
0.7¢015
2,.39913
¢.79011
0,7101@
0,20029
Q.,2*028
2,90007

g.00036G
3,03022
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Screen Analysis

+100 mesh 0.3%

+200 13.7

+325 65.60

-325 20.4
100.0%

Analysis of Coal

‘As Moisture & ash-
received Dry basis free basis.
Volatile matter 37.4% 40.2% 47.5
Fixed carbon 41.4% 44.5% 52.5
Ash 14.2% 15.3% -
Btu/1lb 11,355 12,210 14,420

Sul fur ’ 0.7% 0.7% -

Rheological data are listed on the computer printouts.
Four concentrations were measured, two at 64% solids concen-
tration by weight, and one each at 60% and 55%. It was con-
cluded that higher concentrations, possibly above 70% by
weight, could probably be pumped, although of course pipewall

friction would be high.

3

Nomenclature is given in Fig. 5.2.2.1-1. Alonngith the-
rheological data are included the predicted pressure drops to
overcome pipéwall friction ih psi per mile. The specific
power (kilowatts to transport one dry short ton of coal per
hour one mile) is listed also. In both cases, pressure drop
and specific power are for pipewall friction only and do not
include pipeline bends, elevation differences, fitliiyg

losses, or pump motor efficiencies.

As a point of comparison, the Black Mesa pipeline trans-

ports 660 dry tons of coal per hour at 48% solids by weight

5-35



@

2/
@

&

Qi

R-3025

at less than 6 fps in an 18" diameter pipe.A Pressure drop is
approximately 21 psi/mile. The closest predicted methanol
data point is 27.6 psi/mile for 675 tph at 6 fps and a solids
concentration of 55% by weight. Thus, the methacoal slurry
does not appear to be substantially more viscous than a coal-
water slurry. It does of course require considerably more power

to move the greater amount of payload.

A range of pressure drops for pipe inside-diameters
from 6" to 24" in 2" increments is listed in Fig.5.2.1.1-1 for
velocities from 4 to 16 fps in l-fps increments. Pipe rough-

ness is assumed to be that of new commercial steel (0.00015 ft).

The slurry is essentially a nonsettling or homogeneous
slurry for minus-100 mesh coal but it is on verge of settling.
Thus a coarser particle size is likely to produce a settling
slurry. Thus, the experiment has produced two very significant
pieces of information, both of which are important in the econ-
omics of slurry pipelining - carrying capacity and coarseness
limit.

5.2.1.2 Importance of Carrying Capacity

The carrying capacity of the coal is

important for the several reasons which are discussed below.

5.2.1.2.1 Reduction of Methanol Con-
version Loss

The greater the carrying
capacity of the methanol, the smaller is the total system '
energy loss to the methanol conversion process. Coal can be
converted to methanol at only 40 to 50% efficiency. However,
if the slurry itself is recognized as a fuel and compared to
pure methanol, then the conversion loss is only taken on the
portion converted to methanol, and that loss can be spread

over the entire mixture,



o

R-3025

Lonsider, for example, a slurry which is two-thirds coal
and one-third methanol, the coal being 60% carbon and 30% mois-
ture. Then a ton of coal yields about 3200 1b of methanol,
which in turn transports 6400 1b of coal. The loss of the addi-
tional ton of coal that is consumed in the conversion pfocess
can now be charged to the full 9600 1b of fuel delivered to the
power plant. The overall conversion efficiency of the process
is

9600
9600 + 2000

x 100 = 83% .

If the carrying ratio is increased from two to three, the over-

all conversion efficiency increases to 86%.

This conclusion is sufficiently important to merit repe-
tition. While the direct conversion efficiency of coal to meth-.
anol is at most 50%, the eqdivalent efficiency of conversion
for the entire system potentially approaches 90%. It will be
seen in Section 5.2.1.3.2 below that this efficiency can be
further increased, possibly exceeding 90%.

5.2.1.2.2 Reduction of System Water
Requirement

The ton of coal, which in
the above example is converted to methanol, requires about
3000 1b of water for conversion,if the natural moisture in the
coal can be used in the process, and yields about 3200 1b of
methanol. The carryingbcapacity of this 3000 1b of water,
after its conversion to methanol, may be compared with the
carrying capacity of an equal amount of water at Black Mesa,
where 52 1lh of water carries 48 lb of coal. For a slurry which
is two-thirds coal, the 3200 1lb of methanol carries 6400 1lb of
coal. But the 3200 1b of methanol itself is equivalent, on a
heating-value basis, to approximately the same amount of coal,
so that the equivalent of 6400 + 3200 = 9600 1b of coal is
carried by 3200 1lb of methanol. At Black Mesa, the same 3000

" 1b of water entering the system carries
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48

3000 x ]

= 2769 1b of coal.

Now. consider the removal of water from the coal-water
slurry. 1In Report R-3022 of this series (see Table 1.1 above),
it was seen‘ that at the Mohave Generating Station, 1,176,000 Btu/
ton are required to separate the coal and water and dry the coal
to the contract moisture value of 10.74%. About 1,420,000 Btu
would be required to yield bone-dry coal, which for the coal
used in the pfeceding numerical examples (not the same as Black

Mesa coal) would be equivalent to 166 lb of coal consumed.

In the case of the methanol slurry, of the 50% energy
lost in conversion, it seems reasonable to expect that some can
be used, as low-grade waste heat from the process, to dry the
incbming coal. Therefore, it is not necessary to again charge

the methanol system with the energy loss in obtaining dry coal.

Thus, for the water system, 2769 1lb of coal and 3000 1b
of water enter the system, and 2769 - 166 = 2603 1b of dry coal
eventually appears in the power plant boiler. The transportation

efficiency may then be said to be

2769 - 166 _
57€9 = 94.0% .

With the one-third - two-thirds methanol system, along
with the 3000 1b of entering water, there is a ton of coal to
be converted, a ton to be lost, and 2x3200 = 6400 1lb to be
transported. That is, 10,400 1lb of raw coal enter and the
equivalent of 9600 1b of dry coal emerge, for a transportation

efficiency of

9600

I—O—,_‘I—O—O = 92.3% .

The advantage of methanol as a slurry carrier may now
be portrayed as the ratio of its carrying capacity to that of

water, i.e., .
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10,400 x 0.923
2769 x 0.940

= 3.7 .

For the one-fourth - thrée—fourths methanol system, the advan-

tage 1is

12,800 x 0.941

2769 % 0.940 - 4-°

_ The foregoing example was based upon using the natural
moisture in the coal, which was taken as 30%, or 600 lb/ton.
If none of this moisture is used, the ratios calculated above
must be reduced by 3000/3600 = 0.833,' becoming 3.1 and 3.9
" respectively. .

A highly important conclusion emerges. The water require-
ment for the methanol slurry may be three to four times less
than that for the water slurry.

In the foregoing discussion, methanol and coal have been
treated as equivalent fuels. For the present illustrative pur-
pose, this approach is adequate because the heat contents are
approximately the same. More precise calculations would be
done on a heat content basis for coals of a specific proximate
analysis and for methanol produced by a specific process from
that coal.

Clearly, the water problem for the methanal line is greatly
less than for the water line. In particular, the use of a return
line. becomes very interesting when it is only required to accom- |
modate such a small return fraction. It may be further noted \
that, once it is decided to install the return line, system
flexibility is increased. For example, it is no longer neces-
sary to locate the methanol plant at the head of the line; it
can be placed at any location along the line where other factors,

" e.g., existing labor force, availability of cheap power, proxim-
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ity to other markets for the methanol, etc., are located. How-
ever, as will be seen in Section 5.2.1.3.2 below, there are good

reasons for having the methanol plant at the pipeline head end.

5.2.1.3 - Benefits of Dry Coal

If the coal entering the slurrifier at
the head of the pipeline is completely dry, a number of benefits
accrue. Some of these would be realized in the pipeline opera-
tion, and some in the power plant. They are discussed below,

. A
in reverse order.

5.2.1.3.1 Effects of Moisture upon Power
Plant Efficiency -

Any moisture that enters
the furnace must be evaporated, and the latent heat of vapori-
zation thereby absorbed is denied to the power conversion pro-
cess. For example, if the coal is 30% moisture as in the fore-
going example and as is the case with much Western coal, then
approximately 350 Btu/lb of coal input is required to vaporize
the moisture, representing an energy loss of about 4% for most

Western coal.

Now, it is not possible to avoid taking this losS some-
where between the mine mouth and the power plant stack. 1In
principle, this latent heat, along with that'of the water formed
during combustion, could be recovered by installation of suffi-.
cient preheater surface to cool the stack gas below the boiling
point. In practice, this is not done because condensing'mois-

. ture combines with the sulfur dioxide and other stack gases to
form acids. The process is complex, and heat recoVery in the
preheater is generally limited to about 300°F. However, the

less moisture in the gas, the lower the temperature to which

the stack gas can be economically cooled. And since 30°F in
additional stack gas cooling is worth approximatély a l% in-
crease in efficiency of the power plant, the availability of
bonc-dry coal should have some value hy enahling a small increase'

in power plant efficiency.
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5.2.1.3.2 Effects of Moisture on Pipeline
Operation '

If one now examines the entire
mine-pipeline-power plant complex as an integrated system, it
is seen that drying the coal along with the methanol conversion
process offers several attractions. First, of course, is the

possible increase in power plant efficiency just discussed.

There are three large additional benefits which accrue to
the pipeline operation from the use of dry coal. The first bene-
fit derives from the increase in pipeline efficiency because it
‘is no longer necessary to transport the water. For Western coals,
which generally have high moisture content, this benefit can be

very large. Again using the example of coal which has a 30%
moisture content, the efficiency of the pipeline is increased
by almost 50% if the coal is dried at the head of the line. If
the raw coal is only 20% moisture, the pipeline efficiehcy is
still increased 25% by drying. This increase is realized as a
direct percentage incfease'in the number of Btu transported per

Btu consumed in the transportation process.

The second benefit of drying lies in the further reduction
of the system water requirement, as was seen in the discussion
of water requirements in Section 5.2.1.2. The third benefit from
drying the coal lies in the possibility of obtaining the drying
energy from the methanol conversion process, as was alsd assumed
in the discussion in Section 5.2.1.2.1 above. As noted there,
the methanol conversion process is very inefficient, being
estimatédvat 41% [Bodle '75] to 50% [Burke '75]. Most of this
inefficiency appears in the form of waste heat. If this other-
wise wasted heat is used to dry the coal to be shipped, then
that same amount of energy becomes available as sensible heat
to the power plant energy conversion cycle instead of being lost
as latent heat in the boiler. It is as though low-grade waste
heat from the methanation plant were transported without cost
and transformed into high-grade heat at the power plant, in

defiance of the second law of thermodynamics.
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5.2.2 Methanol Consumption and Marketing Options

At the pipeline terminal, many options

are available for realizing the value of the methanol.

1. The slurry may be burned directly as a fuel

in power plant boilers.

2, The slﬁrry may be separated into powdered coal
and alcohols which, in turn, provide fuel for several applica-

tions. The suboptions include:

2.1 Powdered coal, after separation from the
slurry, may be used as feed stock for low-BTU gas plants in
areas where water for the gasification is available, or for

synthetic natural gas plants or ammonia plants.

2.2 The alcohols may be returned, by a second
pipe laid alongside the main line, to the head end of the
pipeline. As has been seen in Sections 5.2.1.2.1 and 5.2.1.3.2,
the return line for methanol only needs a fifth or a sixth of

the capacity that would be required for a water slurry.

2.3 The alcohols may be marketed as fuel-grade
methanol for stationary engines. The market could include
natural gas supplement, replacement for propane or butane,
gas turbine fuel, additive to gasoline fuel, or used directly

as fuel in engines for automotive and industrial applications.

2.4 The alcohols may be marketed as vehicular
fuel. 1If one looks ahead to the time, early in the next cen-
tury, when petroleum can no longer supply most of the vehicular
fuel regquirement, there appear to be two preeminent candidates
for liquid, vehicular (ultimate) fuels: methanol and hydrogen.
There are, of course, many problems and obstacles to the adop-
tion of either of these, which means that a great deal of
research and development will be necessary to bring either
concept to fruition. The use of methanol in the pipeline in

the nearer term offers the opportunity to find early answers
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to many of the questions relative to its potential as the ul-
timate vehicular fuel. That is, the principal objectives of

two R&D programs can be accomplished by funding only the

vsmalier, more immediate of the two. Moreover, should a methanol

pipeline be built, it would constitute a part of the demon-

stration program for the ultimate fuel.

2.5 The alcohols separated from slurry may
be further separated into the basic constituents for subse-
qguent marketing. These could include: methanol, ethanol, n-

propanol, and i-butanol.

3. The slurry can be used directly as pipeline
fuel. When burned in a gas turbine with a bottoming engine,
the overall efficiency of the pumping process would then be
approximately 50% greater than that of the electrically driven
prime movers. The direct use of the slurry as prime mover
fuel would render the slurry pipeline the most energy-effi-
cient of all coal transportation modes insofar as the con-
sumption of mechanical energy of movement is concerned. When
these two factors are combined in a system design and sub-
jected to economic analysis, it may well be that the methanol-
coal slurry is overall the most energy-efficient mode of long-

distance coal transport.

These simple figures are quoted only to show the
promising potential of the concept. As has already been
stated, it is strongly recommended that further research be
performed. Specific recommendations will be presented in
Report SSS-77-R-3026, R&D Recommendations.

5.2.3 Problem Areas

It is necessary to recognize disadvan-
tages compared to other approaches, potential pitfalls, limi-

tations, technological uncertainties, and economic constraints.
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The brevity with which these factors are treated here is no
indication whatever of their anticipated severity. The future
work which is being recommended here should begin with a quan-
titative, in-depth treatment of these factors. The present
purpose is to identify potential opportunities, not to assess
them in depth. Accordingly, brief mention will be made of only

two particularly sensitive questions.
5.2.3.1 Safety

PreSentétechnology coal slurry pipe-
lines, i.e., waﬁer—coal slurry, appear to be far safer than
any other mode of long-distance coal transport, partly because
the water-coal slurry is not flammable. Methanol-coal slurry,
of course, does not possess this attraction. However, since
it is still far less flammable than some of the fluids presently
moved by commercial pipeline, flammability is certainly not a
barrier to the introduction of methanol-coal slurry pipelines.
However, the safety implications of this new application must

be examined.

5.2.3.2 Environmental Impact

Although it has not been analyzed,
the environmental disruption resulting from a methanol-coal
slurry pipeline spill is almost certain to be more undesirable
than that from a water-coal slurry. However, the consequences
appear to be much less undesirable than some fluids which are
presently moved all over the country by pipeline. Therefore,
‘it seems unlikely that environmental impact will prove to be
a decisive negative factor in the competition. Nevertheless,

that impact must be examined,

5.3 Slurry-fired Engines

To utilize coal-water slurry as a fuel for engines,
it is customary to first dewater the slurry and then utilize
‘the dry, pulverized coal for firing in the engine. Two dif-

ferent systems have been used in the United States to dewater
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and dry coal at the terminus of the coal pipeline. The original
Consolidation Coal pipeline in Ohio used disk filters followed

by flash dryers. The Black Mesa line uses centrifuges mounted
directly on top of the pulverizer, and the centrifugé cake is .
dried in the pulverizer. One other methid is the direct combus-
tion of a concentrated, stabilized coal slurry in a cyclone
burner. This was done only experimentally, but the test was

successful.

Dewatering facilities generally produce environmental
effects similar to those of the coal preparation area and, for
the most part are similarly solved. One exception is the dis-
posal of water from the slurry stream. Water treatment may or
may not be required, depending on intended use of the water.
Normally a coal slurry pipeline can be expected to supply a
steam power plant. In this case, effluent from the dewatering
facility can be used as a part of the cooling water makeup. If
the water is used for boiler feed water, treatment is generally

required.

The major problems involved in burning pulverized coal in
internal combustion engines will be discussed later in para. 6.1.
For the reciprocating engines they would primarily involve meter-
ing, combustion, deposits, and wear. For open cycle gas turbines,
hot corrosion and erosion resulting from high sulfur and ash

content. of most coals are the principal problems.

The severity of the problems is dependent to some extent
on the source and analysis of the coal used. There is a wide
variety of coal mined in the United States (see Table 5.3-1).
Fixed carbon ranges from 40% to 96%, calorific values from 9300
to 15,700 Btu/lb and ash content from 4% to 22%. Some of the
coals, particularly those in the Midwest, are high in sulfur

content, creating difficult air pollution problems.

Little is known about the ignition quality of coal as com-

pared to conventional liquid fuels used in internal combustion



Table 5.3-]1 Sources and Analyses of Various Ranks of Coal

Prozimate, percent Ultimste, percent

. Calonify

.. i . | Conpdi- . the
Cinesiiiestion by rapk State County Bed tion® | Moim-] Yo% | Fised - [nydro-| Car- | Nitre- | Ouy- value. Bty
‘ tile Ash | Bulfur per ib .

ure carbon gcn bon xen gen
maller

1 13.2 2.6 65.3 18.9 0.3 1.9 64.2 0.2 14.5 9.310

Mets-anthracite Rliode Jaland Newport Middle. 2 E 2.9 75.3 21.8 0.3 0.5 741 0.2 3.1 10.740
3 3.8 96.2 0.4 0.6 94.7 0.3 4.0 13.720

1 4.3 5.1 81.0 9. 0.8 2.9 79.7 0.9 6.1 12.880

Antliracite Tenpaylvania | Leckswsons | Clark 2 5.3 84.6 10.} 0.8 2.5 83.3 0.9 2.4 13.470
3 5.9 94.1 0.9 2.8 92.5 1.0 2.8 14,980

1 2.6 10.¢6 79.3 7.5 1.7 3.8 81.4 1.6 4.0 13.880

Rewmnianihiracite Arkapsas Jolineon Lower 2 10.8 81.5% 7.71. 1.8 3.6 83.6 1.6 1.7 14,240
Harieboroe 3 11.7 88.3 1.9 3.9 90.6 1.8 1.8 15.430

1 2.9 17.7 74.0 5.4 0.8 4.6 83.2 1.3 4.7 14,400

Low-volatile bitumsi- West Virginia | Wyoming Pocshootee 2 18.2 76.3 5.5 0.8 4.4 85.2 1.3 2.3 14,830
Bous coal No. 3 3 19.3 | 80.2 0.8 4.6 | 90.7 1.4 2.5 15.690

. 1 1.1 24.4 67.4 6.1 .0 5.0 1.6 1.4 4.9 14310

Medium-volatile bitu- Peonaylvanis Clearfield Upper 2 24.9 .| e8.8 6.3 i | 4.8 83.3 1.5 3.0 14.610
mivous cosl Rittapping 3 26.5 73.% o | 5.2 88.9 1.6 3.2 15.590

. | 2.3 36.5 56.0 5.2 0.8 5.5 78.4 1.6 8.5 14.040

High-volatile A bitu- West Virginia | Msrion . Pituburghb 2 37.4 57.2 5.4 0.8 5.4 80.2 1.6 6.6 14370
minour coal 3 39.5 60.5 0.8 .7 84.8 1.7 7.0 15.180

1 8.5 36. 4 44.3 10.8 2.8 5.4 65.1 1.3 14.6 11,680

High-volatile B bitu- Kentucky, Mublenburg | No. 9 2 39.8 | 48.5 1.7 3.0 4.9 7.2 1.5 7.7 12.760
roioous coal western Held 3 45.0 55.0 3.4 5.5 80.6 1.7 8.8 14,460
1- 14.4 35.4 40.6 .6 3.8 5.8 59.7 1.0 201 10.810

High-volatile C bity- Ilinois Sangamon No. § . 2 41.4 47. 4 11.2 4.4 4.9 69.8 1.2 8.5 12.630
winous coal 3 46.6 53. 4 5.0 5.6 78.6 1.3 9.5 14,230

1 16.9 34.8 44.7 3.6 1.4 6.0 60. 4 1.2 27.4 10.650

Fulbitumioous A oce) | Wyoming Feerotwatlar No. 3 2 41.8 -3). 8 4.4 1.7 4.9 72.7 1.8 14.8 12.810
——— b H 4.7 3.9 1.8 5.2 76.0 V.8 15.8 13.390

: 1 22.2 33.2 40.3 4.3 0.5 6.9 53.9 1.0 334 9.610

Subbitumioous B coal { Wyoming Bberidan Mobparch 2 42.7 51.2 5.6 0.6 5.6 69.3 1.2 17.7 12,350
3 45.2 54. 8 0.6 6.0 73.4 1.3 18.7 13.080

1 25.1 30.4 31.7 6.8 0.3 6.2 50.5 0.7 35.5 8.560

Subbituminous C cos) | Colorsdo’ El Psso Fox Hill 2 40.6 $0.3 9.1 0.4 4.6 67.4 1.0 17.5 11,430
3 44.6 55.4 0.5 5.0 74.1 i 1 19.3 12.560

1 36.8 27.8 29.5 5.9 0.9 6.9 40. 6 0.6 45.0 | 2.000

Lignite North Dakota | Mclaan Uposmed 1 43.9 46.7 9.4 1.4 4.5 64.3 1.0 19.4] -11.080
3 48. 4 51.6 1.6 5.0 70.9 1.1 21.4 12,230

®* 1, sampin a» nx:givod; 2. woisture-free; 3, moisture- and ash-free.
Source: Baumeister & Marks, 1967.



R-3025

engines. This could be an important factor, particularly in
Otto cycle and diesel engines, wherein the basic engine design
(compression ratio, ignition or injection timing, etc.) is
largely influenced by the fuel propertieé. Ignition quality

is largely dependent on the particle size and volatility of the
coal used. It is known from past work that ignition quality and
burning rate improve as particle size decreases. Particle sizing,
however, has not been reported in enough detail to clearly iden-
tify the sizes needed for optimum combustion characteristics.
Work needs to be done not only in this area but also to iden-
tify the chemical mechanisms by which -ignition is initiated.

The effort should also include a determination of whether the
process of pulveriziﬁg changes the chemical as well as the phys-

ical properties of coal.

The concept of methanol-coal slurries introduces new possi-
bilities and considerations with respect to utilization as fuel
in engines. One approach is to burn the slurry as fuel in its
as-received condition. This should definitely be feasible in
Rankine cycle and other external combustion engine power plants.
It may be feasible in gas turbines, although problems of corro-
sion and erosion could result from the coal constituents of
the fuel, depending on the particular type of coal used. Us-
ing a methanol-coal slurry as fuel in reciprocating engines
would be highly questionable because of the inherent diffi-
culties associated with burning coal in these engines, as pre-

viously described.

The other approach is to separate the pulverized coal
from the methanol to provide fuel for different applications.
The use of pulverized coal in various types of engines will
be discussed in more detail later. A discussion of using ‘

methanol as fuel follows.

5.3.1 Reciprocating Engines

Methanol has some significant advantages as a

gasoline engine fuel. It burns much cleaner than petroleum
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fuels or even natural gas. It is a more flexible fuel than
gasoline, permitting wider deviations from ideal fuel-air
ratios. Although the net heat of combustion of methanol (8550
Btu/1lb) is only about half that of gasoline, engines burning
methanol can be made more efficient than gasoline engines. Com-
pression ratios can be increased to take advantage of methanol's
higherAflame speed and good antiknock properties. Because it
burns cleaner than gasoline, fewer emission contrbl devices

are needed. Since it burns cooler and has a cooling effect as
it evaporates in the cylinders, cooling systems can be smaller
and consume less power [Bryson, 1974]. It is completely mixable
with gasoline in concentrations up to about 15%, an advantage
which facilitates its use as a gasoline additive. The addition
of 15% methanol to most motor gasolines increases the Research
Octane Number (RON) significantly and the Motor Octane Number
(MON) slightly. For example, with a typical unleaded gasoline
having a RON of 93 and a MON of 84, the addition of 15% methanol
having octane blending values of 120 RON and 91 MON would in-
crease the octane numbers of the gasoline-methanol blend to 97
RON and 85 MON ([Wigg, 1974].

Methanol has some disadvantages as well. One of its most
serious problems associated with methanol-gasoline mixtures
is phase separation, which relates to the question of fuel sta-
bility. Because of methanol's polar character, its solubility
in gasoline is limited ﬁo about 15%, as indicated earlier. How-
ever, the phase separation problem becomes critical when the
blend contacts even :ery small quantities of water. Rapid
phase separation occurs, with the polar water-methanol phase
settling out at the bottom. Gasoline containing methanol _
would therefore have to be stored and distributed under anhydrous
conditions, which would be difficult and expensive. As an
alternative, it might be possible to blend alcohol with gasoline
at the pump, but this would also be expensive and require special

equipment. Another problem with methanol is the possibility
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of vapor lock occurring in the engine fuel system. The addition
of methanol to gasoline considerably increases the volatility

of the fuel. If current gasoline vapor pressures were to be
maintained, the use of 15% methanol blends would require removal
of all the butanes and a significant fraction of the pentanes.

A further potential disadvantage of using methanol-gasoline
blends is the possible adverse effect on road performance of
vehicles. Because of emission controls, most new cars are already
carbureted near the lean limit for satisfactory performance,

and additional leaning by methanol may tend to compoﬁnd this pro-
blem. The wider flammability limits of methanol may partially |
compensate for the leaner carburetion, but the problem would
still exist.

Essentially the only engine applications to date for meth-
anol have been in racing cars and boats and in piston engine
engine airacraft where it was injected diréctly into manifolds
for added takeoff power. Some experimental testing has been
" conducted with methanol-gasoline blends during the past three
years in late model and older model passenger cars, and the
results suggest that in the area of fuel economy and emissions
the benefits are only significant in the case of the older cars
which operated with rich carburetor mixtures before emission

control standards were imposed.

Burning of methanol is diesel engines presents a con-
siderably. more difficult difficult problem than in gasoline
engines. The high octane number of methanol, which is an advan-
tage in a gasoline engine, is a detriment in a diesel engine
because the ignition delay (a function of the cetane number of .
the fuel) with methanol is much greater than with diesel fuel.

A very high compression ratio, or an auxiliary means of ignition,
would be required to properly ignite methanol in a compression
ignition engine, particularly for starting and under idling‘or
light load conditions. This would cause some complications in
the engine design and no doubt result in greater cost as well as

maintenance. Another potential problem would be more rapid wear
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in the fuel injectors because of the low lubricity of methanol.
With some development effort it may be possible to adapt diesel
engines to run on blends of methanol-diesel fuel, but the only

apparent advantage would be to conserve a small percentage of

diesel fuel, and it is guestionable whether the compromises

involved in engine design and performance would be worthwhile.

5.3.2 Gas Turbines

Methanol has excellent characteristics as a gas
‘turbine fuel, primarily because of its clean burning character-
istics which result in a lower level of harmful emissions and
should help to ensure long éomponent life and low maintenance.
With its continuous combustion process the turbine is not subject
to the limitafions of reciprocating engines with regard to igni-

tion quality.

The potential of coal-derived methanol as a substitute
fuel for natural gas and petroleum-derived ligquid fuel for gas
turbines provided the incentive for a recent joint test project
by AMAX, Inc., Turbo Power and Marine, and Florida Power Corp. (FPC)
[Farmer, 1976]. A 12.5-hr run on methanol was conducted at one of
FPC's gas turbine generator installations. The power plant was
converted to a dual fuel configuration, both to allow direct
comparison with standard fuel oil and to provide gas assist ~
starting on methanol and No.2 oil. The only other engine modi-
fication was addition of a piston pump at the fuel supply to

provide lubrication of the engine fuel pump.

Engine performance on methanol was reported to be excel-
lent. Acceleration was normal, and steady state running was
even more stable than on No.2 fuel. Burner can temperature
patterns were the same as when burning Jet A or No.2, and there
was little carbon buildup on the nozzles. Test data for NOx
emissions while burning methanol (Fig. 5.3.2-1) showed that, over
the power range tested, emissions were 74% less than with No.2

oil. CO emissions were somewhat higher with methanol than with
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No. 2 fuel, exceeding the projected EPA limit at loads higher
than 15 MW (Fig. 5.3.2-2). However, the whole question of meet-
ing proposed regulations is somewhat academic at present, because

the regulations have not yet been promﬁlgated.

From this and other programs (AMAX is also working with
General Motors on vehicular turbine tests), it is concluded
that methanol has excellent potential as a turbine fuel, pro-
vided it can be produced at a price competitive with petroleum-
based turbine fuel. With coal-derived methanol, this appears
to be a distinct possibility.

5.3.3 Boilers

The potential of methanol as a fuel for indus-
trial boilers appears to be equally as good, if not better than,’
for gas turbines. Modifications should for the most part be
confined to fuel pumps and burner nozzles to handle the larger
volume of methanol required for providing the same output as
fegular fuel‘oil. With the continuous combustion process and a
clean burning fuel, control should be relatively simple, and

maintenance should be low.
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6.0 SUBSTITUTION OF COAL FOR PETROLEUM AND GAS IN PIPELINE
OPERATIONS

The President's energy goals for the 1977-85 period,
as stated in his message to Congress in April 1977, placé heavy
emphasis on both energy conservation and increased production
and use of coal. Since coal is the Nation's'most abundant
energy resource, the President is thereby relying on coal to
replace 0il and natural gas for many industrial fuel applica-
tions. One of the major goals is to increase coal production by
more than two-thirds, from 665 million tons in 1976 to more than
1 billion tons by 1985. Electric utilities are being pressed
not only to use coal for their new power plants but also to con-
vert existing oil and gas—firéd generators to coal. The same
philosqphy applies to other industries that consume power, in-
cluding the pipeline industry. The issues being addressed in
this study of energy consumption in pipeline transportation sys-
tems must therefore include not only efficiency improvements in
pipeline dfivers using conventional gas and petroleum fuels but

also methods of burning coal in those power plants.

The conversion of coal into synthetic fuels presents diffi-
cult economic problems. At present it is estimated that syh—
thetic liquid petroleum, using the best available processes,
would have to sell for about $20-25/bbl, which 1s nearly double
the world price of crude o0il. It is also estimated that, based
on current technology, it would cost about $35 billion to build
the coal liquefaction plants needed to replace only 10% of
today's total petroleum consumption. Production of synthetic gas
from coal is likewise not yet economically practical. Pro-
cesses now being tested in pilot plants would require a price
at least twice as high as the free mafkethpfice of natural gas
produced and sold within the same state} and three to four
times higher than the government-regulated price for natural
gas sold interstate. To build a commercial gasification plant



capable of processing more than 15,000 tons of coal a day, it is
estimated that the cost would be as much as $1 billion [Mullany,
1977]. ' :

ERDA, shortly after its creation in January 1975, moved

toward the implementation of large demonstration projects for
converting coal to clean fuels. The conversion and use of

coal was given high priority in ERDA's National Energy Plan,
issued in April 1976. ERDA to date has defined several demon-
stration projects for translating advanced concepts into com-
mercial use. One, a cleah boiler fuel plant, is now under way,
with the award of a $237 million contract to the Coalcon Co.

in 1975. The others include a pipeline quality gas plant aimed
at industrial and commercial heating, and a fuel gas plant for
electric power utilities or industrial uses. Industry cost
sharing is concentrated in the more advanced phases of coal
conversion, although there is some industrial cofunding in earlier

develophental stages [White, 1976].

ERDA's coal conversion and utilization effort is directed
toward demonstrating second-generation technology on a near
commercial scale in the early 1980's. A variety of processes
is being developed to convert Eastern and Western coal to liquids
and gases. Coal utilization programs are directed toward devel-
opment of processes to permit increased use of coal by direct
combustion, with the objective of developing and demonstrating
on a commercial scale the direct combustion of high-sulfur coal
without exceeding pollution standards. Fluidized bed combus-
tors confaining sulfur oxide sorbents will be used in the '
burning of coal. This direct combustion technology is con-
‘sidered to have near-term (1985) potential as an alternative to

existing boiler systems that use scrubbers for emission control.

While the coal conversion and utilization efforts in
ERDA's Fossil Energy program discussed above have potential
benefits in the overall spectrum of power generation, there
are alternative approaches which could have significant bene-

fits more directly related to the pipeline industry. One of

6-2



"R-3025

these.is discussed in para. 4.3.6 of this report concerning pipe-
line ‘application of fuel cells, in which the potential applica-
tion of fuel cell powered DC motors to éliminate throttling
losses in liquid pipelines, is described. Another concept which
merits consideration is the direct utilization of pulverized

coal in liquid pipeline drivers with the coal brought to the
pumping station in the form of slurries. The technical and

logistical aspects of this concept are discussed below.

6.1 Coal Dust as a Pipeline Driver Fuel -

The question of substituting coal and coal-derived
fuels for the petroleum fuels presently used in.pipeline opera-
tions involves consideration of the practicality of coal-fired
engines and slurry-fired engines and the logistics of transport-

ing coal and coal slurries to the pipeline pumping stations.

6.1.1 Coal Dust as an Engine Fuel

Any consideration of burning coal in engines
presupposes that the coal has undergone certain processing.
Coal receives an initial processing as it comes from the mine;
including cleaning and grading to size. Those impurities that
are readily removable (e.g., slate, shale, clay, sandstone, and
pyritic sulfur) are eliminated by physical treatment. Organic
sulfur and some incombustible materials cannot be eliminated by
physical treatment. While there are techniques for removing some
of the ash and sulfur, these processes are sophisticated and
expensive, making it doubtful as to whether they offer any real
advantage over coal liquefactionvor gasification. Processing
of pulverized coal for use in furnaces is a well established
technology. However, little is known concerning the‘optimum
particle size for efficient combustion in internal combustion

engines.

6.1.1.1 'Reciprocating Engine Fuel

Early in the development of the recip-

rocating internal combustion engine, attempts were made to use

" 6-3



R-3025

coal as a fuel. Almost all work has involved the use of pul-
verized coal either in a dry state or slurried in an oil or
aqueous carrxier. In 1898 Rudolph Diesel, after experimenting
with an internal combustion engine using powdered coal as fuel,
developed the compression ignition engine that bears his name.
The powdered coal engines were not then successful and were
abandqned when the diesel engine, using oil as fuel, ran with an

efficiency much higher than any previous engine.

Development projects on coal-burning diesel engines were in-
dependently conducted by five industrial companies in Germany during
the period 1916 to 1944, after which all efforts in this field were
terminated [Soehngen, 1976]. Under these programs, which were in
progress for periods ranging from to to 24 years, apprdximately
19 coal dust engines in the power range from 10 to 600 HP and
rated at speeds from 160 to 16oco rpm were built and tested. The

major .problems experienced can be summarized as follows:

(1) Fuel feeding and control system. The most critical

components were in the pre-chamber system with its control valves
and nozzles, the task of which was to hold a properly metered
amount of coal dust or coal dust/air mixture and transfer this
fuel into the engine cylinder with correct timing and duration
of injection in uniformly dispersed form and with a minimum of
injection energy. Two basic systems were developed: (a) a com-
pressor injection system using compressed air from an external
compressor for pressurizing the pre-chamber and injecting the '
fuel in the cylinder; and (b) a.compreséor-less injection sys—
tem using pressure rise through partial combustion of the fuel
within the pre-chamber to inject the fuel into the cylinder.

The compressor injection system had several drawbacks including
high energy consumption, high cost, and complexity,with resul-
tant reduction in system reliability. The compressor-less self-
injection system did not adequately control ignition timing or
injection timing or fuel leakage from the pre-chamber to the engine

cylinder during the charging period.
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(2) Fuel and combustion characteristics. The widely varying

chemical and physical properties of coal made it very difficult
to match the operational requirements of the énginé. Factors of
particular importance are heating value (typically ranging from
7000 to 15,000 Btu/lb); ignition temperature (ranging from

250°C for lignite to 800°C for anthracite) and ash content. The
combustion phenomena involve three major parameters including
ignition time, main combustion time, and burnout time. These
parameters are affected by physical, fluid mechanical properties,
and particle size and structure. Despite more than 100 years

of combustion research, engineers are not yet in agreemé;f on the

exact combustion mechanism of a complex fuel such as coal.

(3) Wear and erosion. Excessive wear of vital engine

components due to the abrasive action of ashes and unburned coke
particles were the most serious detriment to long duration opera-
tion. Major engine components affected were cylinder liners,
piston rings, injection nozzles, valve seats, and bearings and

other sliding surfaces.

Although the German programs were, to a degree, successful
in solving some of the basic problems of the coal-dust diesel
engine, fuel consumption and efficiency, reliability and duty
life of essential components were definitely inferior to those
of comparable o0il diesel engines. It is significant that vir-
tually all engines built under these programs were experimental
engines, only two of them having been put into practical use

for driving machinery in factories on a routine basis.

Experience with coal-burning engines in the U.S. has
heen very limited, but in general has corroborated the results
on those developed in Germany. Another problem of some signifi-
cance, although not discussed in the German reports, is air
pollution which can arise from the high sulfur content of some

coals and the particulate matter in the exhaust. Because of
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these problems, as well as the wide variability of chemical pro-
perties of coal mined throughout the country, most researchers
have concluded that direct utilization of pulverized coal in pis-
ton engines, at least those used in automotive and other mobile
applications, is not practical. The use of powdered coal in
large stationary engines éhould present less difficulty than in
the case of the automotive engine because the stationary engines
run at slower speeds and their combustion systems are less sen-
sifive to fuel quality; however, they would still face many of
the same problems with respect to metering, wear, and exhaust

guality.

Y

A relatively simple and more practical approach to burning
coal in a reciprocating engine is to fit the engine with a suit-
able gas producer to partially convert the coal to. combustible
gases so that the gases may be consumed in the engine. Such
gas producers convert carbon to carbon monoxide, losing about
half the fuel heating value in the process. Cooied,.filtered
gas is then burned in the engine at normal engine efficiency,
although the overall efficiency from fuel to output shaft power
is of course reduced about 50%. The only engine modification
required for a spark ignition engine is to replace the carburetor
with a gas-mixing valve. For a compression ignifion engine, a
small pilot charge of diesel fuel is required to ignite the gas;
In Europe, during World War II, about 500,000 trucks and autos
were operated with coal or charcoal-fired gas producers because
- of the shortage of gasoline. Although bulky and inefficient,
these vehicles proved to be fairly reliable and demonstrated that
coal (or charcoal derived from wood) could be used as an emer-

‘genoy fuel when conventional liquid fuels were not available.

6.1.1.2 Gas Turbine Fuel

Some of the problems involved in burn-
ing‘pulverized coal is piston engines are also commcn to the
open cycle gas turbine.  In particular, the turbine is susceptible
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to hot corrosion and erosion resulting from high sulfur and ash
content of most coals. The gas turbine does have one significant
advantage over the diesel or Otto cycle engine in that it can

burn a wide range of fuels of varying ignition guality. Tﬁe
absence of rubbing internal parts (pistons reciprocating in cylin-
ders) in the compression and expansion processes is also an advan-
tage from the wear standpoint.

Modifications necessary to a gas turbine to burn solid coal
efficiently have recently been investigated by Solar Divsion
of International Harvester Co. The work was done under a sub-
contract with Combustion Power Co., which haa a contract with
ERDA to identify the hot corrosion and erosion problems that
would be expected in the hot end of a gas turbine burning coal
in a fluidized bed combustor. The process included a fluidized
bed combustor which operated on Illinois No. 6 coal, and three
stages of filtration to remove the sulfur and separate the ash
from the hot exhaust gases before they enter the turbine. The
investigation indicated fouling, which can be expected from the
- fly ash at temperatures above about 470°C, to be the principal
deterrent to the use of coal-fired gas turbines, although erosion
may become significant in the lower temperature turbine stages
and during spall of deposited ash. It was concluded that future
work to improve the potential of operating gas turbines on coal
must identify the principal contributor to the fouling mechanism,
i.e, temperature,’ surface chemistry, particle energy; and then
investigate strategies for mitigating the ash deposits and their

resultant effects on the substrate.

Another contract, recently awarded by ERDA to Curtiss-Wright
Power Systems, is aimed at demonstrating the feasibility of a
gas turbine to burn high sulfur coal econdmically in utility
service. - The contract covers the design, construction, and
operation of a pilot plant comprising a gas turbine with a
fluidized bed combustor. This 300 MW pilot plant will be the

6-7
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first step in a practical application of this principle to

power generation.

It is evident that the problems of burning coal in gas
turbines are of far less magnitude than those in piston engines.
If the erosion and corrosion problems can be successfully over-
come, the open cycle gas turbine engine with the addition of a
~Rankine bottoming cycle could well prove to be a workable can-
didate for a prime mover for pumps used in liquid pipeiines.

As was discussed earlier in Section 4.1.1.2, an organic bottoming
engine on a typical second generation gas turbine, representa-
tive of those presently installed on gas pipelines, could achieve
an overall efficiency »f more than 40% for the combined cycle
plant. A retrofit of the pumping station could be accomplished
either by fitting the combined cycle plant with an electric
generator to supply power to the existing electric motor-driven
pump, or by eliminating the electric motor and driving the pump

directly from the gas turbine and Rankine cycle turbine (e.g.,

as illustrated in Fig. 4.1.1.2-1 above. 1In either case, a
significant saving in operating coSt over the cost of using
utility power should result. There are of course other major
cost factors to consider, including capital cost and maint-
enance cost, but the concept appears to be worthy of further
study.

Another concept which merits consideration is the use of
an indirect-fired coal-burning combined cycle pump station, such
as a closed Brayton cycle power plant with a bottoming cycle,
or some variation thereof. Since the turbine in a closed cycle
power plant is exposed only to the working fluid (air in the
case of a closed cycle gas turbine), it is not subject to the
corrosion and erosion problems of an open cycle plant. The
problems of burning coal are therefore confined to the air
heater. v

Development of closed Brayton cycle systems started
in 1939 and the first power plant of this type was placed in
service in 1940. This was an oil burning plant manufactured

by Escher-Wyss in Switzerland. The first coal burning closed

6-8
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Brayton system was an Escher-Wyss/GHH 2300 KW plant which
started operation in Ravensburg, Germany, in 1956. It can be
regarded as the starting point for the practical use of closed
cycle machines after about 20 years of laboratory testing and
development by Escher-Wyss and then licensees. This plant had
approximately 120,000 hours running time by June 1976, with
reportedly only minor problems and repairs. The combustion
system could be changed in only one or two days to operate on
coal, 0il or gas. Altogether there have been some fifteen
closed cycle gas turbine plants built in Europe, Great Britain,
Russia and Japan, as indicated in Table 6.1.1.2-1. A number

of these plants, including several which used coal as fuel, have
accumulated over 100,000 hours of operation. Turbine inlet
temperature have ranged from 650 to 7500C and plant efficiencies
have been in the generai range of 25 to 32%. Although those .
closed cycle plants have demonstrated ecnomic viability, utilities
have been reluctant to install them on a broad basis, primarily,
it would seem, because of the hitherto-wide availability of clean
fuels whose combustion gases can be passed directly through a
turbine. Such factors, without strong additional incentive or
special requirements, have retarded nine rapid acceptance

and application of closed cycle gas turbine systems. [Harmon,
'76]. 4 ‘

' With the current emphasis on use of coal as fuel and
with the advent in recent years of high-temperature materials,
the closed Brayton cycle power plant may!be the preferred‘
approach to direct use of coal. One promising approach for
achieving higher closed-turbine efficiency would be the use of
new high temperature ceramics, such as silicon nitrate or
silicon carbide, in the air heater. The addition of a Rankine
bottoming system using waste heat from the air heater would
result in a further increase in overall plant efficiency.
Pfeliminary analysis indicates that, with a turbine inlet
temperature of 1000°C (which should be feasible with ceramic
materials in the air heater) and an organic bottoming system,
an overall efficiency of over 40% could be achieved in a plant
of 2000 KW or larger.
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6.1.2 Logistics of Coal Consumption in Pipelines

The pumping stations in loné distance liquid pipe-
lines are for the most part located in remote sites, and there
is currently no economical means of transporting coal to these
sites. Since shipment by rail directly to the pumping station-
would be out of the question in most cases, the élternative would -
be to haul the coal by truck from the nearest rail terminal to
the pumping site, where it would have to be processed into pul—

verized coal. This would be prohibitively expensive.

6.2 Logistics of Methanol-Coal Slurry as Pipeline Fuel

A potential solution to the logistical obstacle to use
of coal in pipeline drivers lies in the use of the coal-methanol
slurry, discussed earlier in Section 5.0, where it was concluded
that the methanol-coal slurry offers an extremely interesting
concept for pipelining coal. When that technology is developed,
it will then be practiéal to consider use of crude o0il and pro-
ducts pipelines to transport slurry as well. Thus, pipelines .
which transport oils and oil field and/or refineries to or

through coal mining regions could also be used to move coal to

' their own pumping stations. The compatibility of the methanol-

coal slurry with these other ligquids at the interfaces must of

course be investigated.

The pumping requirements of methanol—coal‘slurry would
differ from those of crudes and products and would have to be
carefully analyzed. The rheological tests described in paragréph
5.2.1 show that, with high concentratraticns of coal in the
methanol-coal slurry, the pipe wall friction would be high and

therefore more power would be required for a given throughput
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than with the conventional liquids. The pumps in crude oil

and products pipelines are predominaritly of the centrifugal

type. Although these pumps would be suitable for puméing

slurry, they are notilikely to be ﬁhe preferred choice, so that
some efficiency penalty would be suffered. The mainline pumps
used on the existing coal-water slurry lines are high efficiency,
piston-type pumps, as indicated in Section.6.2. Although centri-
fugal pumps are used for in-plant commercial slurry systems, they
are low effiéiency type (on the order of 65%) with a relatively

wide throat impeller clearance.

Additional questions of significance revolve primarily

around whether the direct combustion of methanol-coal slurry in

" the gas turbine prime mover is determined to be practical. As

indicated earlier in para.5, there is little question that meth-
anol by itself is an excellent fuel for turbines. If it were
necessary to separate the methanol from the coal, additional
facilities would have to be provided and the logistics would be

more complicated.

- A detailed logistical analysis is beyond the scope of the
present study. However, the concept appears to possess merit,

and further study is recommended.
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7.0 FLOW INDUCER IMPROVEMENTS

7.1 Liquid Pumps

Pumps used in liquid pipelines fall generally into

two categories: centrifugal and positive displacement pumps.

7.1.1 Centrifugal Pumps

Centﬁifugal pumps operate at relatively higﬁ
speeds and are usually direct connected to the drivers, the
majority of which are eléctric motors. Centrifugal pumps are
typically described as velocity machines in that their perform-
ance depends on the rotating velocity of impeller tips. The.
operating parameters that vary with speed are output flow, head,
and the required drive power.  Flow rates vary directly’with
speed; head varies with the Square of speed; and required drive
power varies with the cube of speed. 1In contrast to positive dis-
placement pumps, centrifugal punps develop a limited head at
constant speed over an operating range from zero to rated capa-
city; therefore, excessively high pressures cannot occur. Figure
7.1.1-1 shows typical characteristic curves for a centrifugal

pump at constant rpm.

The efficiency of single stage centrifugal pumps depends
on specific speéd (hydraulic design), capacity, iﬁlet head,
internal running clearances, surface roughness, and stuffing
box friction. The influence of specific speed and capacity are
dominating in most cases. The best‘poésible efficiencies of
centrifugal pumps depend to a large éxtent on specific speed as
shown in Fig. 7;1.1—2. At very low speeds, friction losses be-
come excessive, resulting in a rapid drop in éfficiency as spe-

cific speeds fall below 1500 gpm.

Figure 7.1.1.3 shows a family of efficiency curves for a

typical centrifugal pump which would be used on a small pump



@

R-3025

.

products pipeline. The optimum efficiency of 87-88% is represent-

ative of current state of the art.

Centrifugal pumps used on pipelines transporting only
one type of product are normally selected to provide a certain
head at a design flow rate. The speed of the pump is constant
for that flow rate. When the pumps are driven by constant speed
motors, the throughput can be decreaséd by throttling. The sim-
plest and most flexible method of varying flow is by use of a
throttling valve in. the output line. The throttling valve has
several advantages. No pump modifications are required} and
circuit changes are minor. With such a valve, flow can be
varied precisely during operation to obtain required flow rates.
However, throttling has several drawbacks, the most important of
which is loss of pump efficiency. Because the pump is delivering
full effort against a partial obstruction, total pump efficiency

is low for the usable flow delivered and the driving motor may

'be overloaded. Accordingly, throttling is generally used only

for applications requiring frequent flow variations, in which
high power consumption is acceptable. Another way to achieve a
lower throughput is to reduce the speed of the pump by using a
variable speed drive unit, such as a diesel engine, fluid coupl-

N
ing, gear reduction, or variable speed motor.

When two pumps are operated in parallel, the combined
delivery for a given head is equal to the sum of the deliveries
at that head, as illustrated in Fig. 7.1.1.4. For satisfactory
opefation in parallel, the pump units must be working on that
portion of the curve that drops off with increase in the individual
capacities of the two units in order to assure stable flow dis-

tribution between the pumps.

, -When two pumps are operated in series, the combined head
for any flpw is equal to the sum of the individual heads at a

given capacity, as shown in Fig. 7.1.1.5.
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Figure 7.1.1-6 illustrates an example, using two pumps
in series, in which it is necessary to operate the pipelihe at
a throughput lower than design. Operation at point a on the

system curve requires a lower throughput, which can be achieved

,either by throttling by an amount represented by H or by

- Operating at reduced speed along the lower of the two curves.

The variable speed method of reducing throughput would normally
be the more efficient method. The application of these principles

to pipeline operation has been discussed in Section -4.3.6.

7.1.2 Positive Displacement Pumps

Positive displacement pumps can be categorized.

into two principal classes: rotary pumps and reciprocating pumps.

A rotary pump consists of an assembly of gears, valves,
cams, screws, vanes or other moving parts which rotate in a
fixed casing. Instead of "throwing" the liquid as in a centrif-
ugal pump, the rotor components push the liquid toward the dis-
charge port much as a piston of a reciprocating.puﬁp does. Un-
like the reciprocating pump, the rotary pump discharges a smooth
flow. They will handle almost any liquid that is free of hard
and abrasive solid material. Neglecting slip, rotary pumps
deliver almost constant capacity agaihst variable discharge pres-
sure. Typical capacity and horsepower characteristics of a

rotary pump at a given viscosity are illustrated in Fig. 7.1.2.1.

Rotary pumps are manufactured with capacities ranging
from less than 1 gpm to more than 5000 gpm. They can héndle
pressures ranging to more than 10,000 psi and viscosities rang-
ing from less than 1 centistoke to more than one million SSU.
Their broadest field of application is in handling fluids that
have some lubricating value and sufficient viscosity to pre-

vent excessive slip at required pressure.

Reciprocating pumps are positive displacement units that
discharge a fixed quantity of liquid during piston or plunger
movement through the length of the stroke. Disregarding leaks
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and bypass arrangements, the volume of liquid displaced during
one stroke of the piston or plunger equals the product of the

piston area and stroke length.

The advantages of reciprocating puﬁps are flexibility of
operation, nearly constant efficiency for wide ranges'in capa-
city and head, and ability to handle small volumes at high heads.
Disadvantages include valve ;roubles, pulsating flow and head,
higher cost, greater required floor space, and higher mainte-

nance cost due to the complexity of moving parts.

Positive displacement pumps used in pipelines are predom-
inantly of the reciprocating type. The inherently high effi-
ciency of these'pumps is almost independent of pressure and capa-
city and is only slightly lower for a small pump than for a
large pump. They are most useful in applications requiring
high pressure and relatively low capacity, where their high
efficiency more than offsets the high initial cost.

7.2 Slurry Pumps

One of the most demanding applications for a pump is
in slurry pipelines. Both of the major coal slurry lines cur-
rently in existence use reciprocating pumps. . Pertinent data on

these installations are shown in Table 7, 2-1 [Thompson, et al.,1972].

Selection of pumps for slurry pipelines has been related
primarily to two factors: required discharge pressure and
abrasivity. For required discharge pressures under 650 psi,
centrifugal pumps have been selected (for slurries other than
coal) based on lower cost. For higher discharge pressures, only
positive displacement pumps are technically feasible due to
casing pressure limitations on centrifugal pumps. In systems
where posilive displacenent pumps are utilized, the more abra-
sive slurries require the use of a plunger pump which has the
capability to continuously flush the plunger of abrasive
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Reciprocating Pumps in Use in

Major Coal flurry Lines

Length (miles)
Diameter (inches)

Annual throughput
(million tons/yr)

Type of pump

Pdmp Manufacturer

Pump drive (hp)

No. of pump stations
Total number of pumps

Flow per pump (U.S. gpm)

Maximum discharge pressure
(psi)

Concentration (% by weight)

Maximum particle size

Consolidation Black Mesa
Coal System System
108 273
10 18
1.3 4.8

Double acting,
duplex piston

Wilson-Snyder
450

550
1200

50
14 mesh

Double acting,
duplex piston

Wilson-Snyder

1500,1750,
1750

4
6, 4, 3

2100,1400,
2100

1080,1785,
1165

45-50
14 mesh
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material. The less abrasive materials allow the use of a piston
pump. The fluid end sections of piston pumps and plunger pumps
are shown in Figs. 7.2-1 and 7.2-2, respectively. 1In the case of
the Consolidation Coal and Black Mesa slurry systems, positive
~displacement pumps were selected because of their higher pres-
sures and operating efficiencies as compared with centrifugal
pumps.' Piston and plunger type pumps were both investigated,

and piston pumps were chosen as they were considered to have
acceptable life with the abrasiveness of the coal slurry to

be pumped.

Table-7.2-2 compares pump cépabilities in existing slurry
lines, including other slurry materials (limestone, copper
concentrate, magnetite. concentrate, and otheps) as well as

coal. ' .

Considerable improvement in pump maintenance costs has
been experienced on existing pipeline systems. This has.largely-
been accomplished with experimental programs over a period of
years. For example, the life of rubber valve inserts was in-
creased from only 90 hours initially to 1100 hours with improved
polyurethane inserts; the use of chrome-plated liners increased '
the life of piston inserts from 180 to 500 hours and doubled
the life of liners; and piston rod packing life was increased
from 100 to 6000 -hours. Maintenance life on expendable parts
for low and high abrasive slurries is shown in Table .7.2-3

below.

Slurry pipelines utilizing positive displacement pumps
usually have at least two variable-speed operating pumps per.
station in order to vary throughput and to simplify restart
of the pipeline after shutdown. A number of different speed
control devices, as indicated in Table 7.2-4 below, are being

used on existing systems.



Comparison of Pump Capabilities

Table 7.2-2

Maximum
Pump type pressure
Pump type (psi.)
Plunger 3500-4000 .
-Piston 2500-3000
Centri- 600-700
fugal :

Maximum

flow

(gpm)

920
2700
50,000

R-3025

Mechanical Maximum
efficiency particle
(psi) size
85-90 8 mesh
85-90 8 mesh
40-75 6 mesh
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Table 7.2-3

Maintenance Life on Expendable Pump Parts

Expendable Part Life

(hours) ¥
Low abrasivity High abrasivity
(piston) i (plunger)
valves 1100 500
Piston rod 3000 -
Plunger sleeve - 720
Piston liner - 4000 -
Brass bushings - 425
Packing 6000 425

* . . ’
Approx. 1500 psi differential pressure
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Table 7.2-4

Speed Control Devices for Electric

Drive Slurry Pumps

Type Speed Control Where Used

Fluid drive Consolidation Coall, Savage
River,2 Black Mesa
Eddy current Calaveras,3 wWaipipi?
Wound rotor motor with Bougainville5
liquid rheostat o '
Synchrodrive West Irian®
Pole changing sqguirrel Trinidad3
cage
l1-Coal slurry lines 4-Magnetite concentrate
2-Iron concentrate slurry line slurry line
3-Limestone slurry lines 5-Copper c¢oncentrate slurry line
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Fluid couplings have proved to be satisfactory in high
horsepower ranges. They are rugged, reliable, and require
little maintenance. Eddy current couplings have performed satis-
factorily in the lower horsepower ranges (less than 1000 hp) and
provide more precise control than fluid couplings, particularly
at lower pump speeds. Variable speed motors have also proved
éatisfactory for slurry pumping service, although'they are more
sensitive to variations in load than fluid and eddy current
couplings. The pole changing squirrel cage motor is a variable
speed device capable of operating at two speeds and operates at
high efficiency at either speed. By having several pumps in
parallel with different speed ratings, combinations can be used
to provide several speed capabilities. The "Synchrodrive" unit
is a device which combines gear reduction and speed control ele-
ments and which can be obtained in any size required for a slurry
pump. This results in a saving of space and cost, and mainte-
nance costs should be low because of reduced complexities of

the system.

Centrifugal pumps are used extensively for in-plant com-
mercial slurry éystems, typically those used for in-plant trans-
portation of slurries in the mining, cement, and other industries.
Their application is generally restricted to short distances
because of their limited head capability, lower allowable casing
pressures, and lower efficiencies. On long distance slurry pipe-
line systems they sometimes serve as booster pumps, providing
suction pressure required for mainline reciprocating pumps.
Centrifugal pumps are also used to pump slurry through safety
loops, allowing system operators to monitor the slurry for quality
before committing it to the pipeline.

The efficiency of a centrifugal slurry pump is low because
of the necessarily robust nature of the impeller design and the
relatively wide throat impeller clearance. Efficiencies of

65% are common, compared to 85 to 90% on the positive displace-

10

~J
i
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ment pumps used in slurry systems. The centrifugal slurry pump

is a flexible piece of equipment in that, if sufficient drive
horsepower has been installed, the head capacity can be increased
or decreased simply by changing the speed of the pump. Belt-
driven units are most common and the speed change is generally
achieved by changing the drive sheave. In pumps with metal
impellors, the diameter of the impeller can be increased or de-

creased to match the system characteristics.

New coal- slurry pipelines in the planning stages may require
throuéhputs as high as 20,000 U.S. gallons per minute to be
transported hundreds of miles. Assuming that the pumps on the
new generation slurry pipelines will be adaptations of existing
positive displacement pumps, this could mean that pump capa-
bilities of 4000 to 5000 gpm (as compared to the 1785 gpm maxi-

mum capacity of present pumps) will be desirable.

Another type of positive displacement pump which may offer
potential for future slurry pipelines is a high flow, high
pressure axial flow pump such as used in the NASA Saturn space
program for pumping liquid hydrogen. A pump of this type is
available with a volume flow rate of 18,000 gpm at 1000 psi dis-
charge pressure. It could therefore replace as many as eight
of the present piston pumps in a long distance coal slurry pipe-
line, and would probably réquire less maintenance. However,
the axial flow pump is approximately 5% less efficient than the
piston pumps now used, and it is doubtful if the overall cost

would be less than with piston pumps of the latest design.

In general, it is concluded that the state of the art in
both centrifugal and positive displacement pumps is well a&vanced
and there are no technological breakthroughs which could be ex-
ploited in an ERDA-supported program, '
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7.3 Compressors

Until about 1947, the compression requirements of
natural gas pipelines were satisfied entirely by reciprocating
compressors.- Since that time, the acceptance of the centrifugal
compressor has steadily increased until it constitutes a substan-
tial proportion of the total transmission compression horsepower
installed. Figure 7.3-1 (FPC, 1974; Gas Turbine International, -
1974] shows graphically the total capacity in installed compres-
sion horsepower for both gas turbine-driven centrifugal units and
reciprocating units for the years 1963 through 1973. Over 50% of
the total transmission line compression horsepower installed during
this period was of the turbine centrifugal type. However, during
1973, the trend reversed. Since the Arab o0il embargo, not only
have new units tended toward feciprocators because of their higher
efficiency, but on those lines whose sources are decreasing, the

first units to be taken out of service were the turbines.

The centrifugal compressor is classified as a dynamic
machine because all compression is achieved by continuous dynamic
action of the blades and channels. Inertial forces are trans-
mitted by a rotating impeller which, by centrifugal motion, adds
kinetic energy to the gas by acceleration. The gas' flows from
the impeller into the diffuser where the gas decelerates and the
kinetic energy is transformed into potential energy, i.e., pres-
sure energy. A single centrifugal stage provides a relatively
low pressure ratio (currently in. the range of about 1.15 to 1.4).
When larger ratios are desired, additional stages are added in

series.

The natural gas centrifugal compressor was originally
desigﬁed for natural gas boosting service. Pressure ratios up
to 5:1 or higher (dependinglon gas properties) over a wide range
of flows can be achieved. Higher pressure ratios can be obtained
by operating two or more compressors in series with intercooling.
Maximum discharge pressures of up to 4000 psig can be obtained

using a high-pressure case.
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The centrifugal compressor has broad pressure-volume char-
acteristics. These are accomplished by using backward swept
impeller blades, vaneless diffusers, and a variety of inlet guide
vanes. Compressors using this type of staging have relatively
low pressure ratios per stage, so a multistage machine is neces-

sary for all but the lowest pressure ratios.

One of the most important parameters for classifying com-
pressor impellers hydrodynamically is specific speed. It is

‘calculated by the formula

Specific speed = EEEXQ—
H3/4

where .
Q inlet volume flow (ICFM), and
H head (feet).

The specific speed is the speed that would be required of a
geometrically similar machine to produce unit head with unit
flow. \

The peak efficiency of centrifugal impeilers occurs in the
specific speed rangerf 650 to 800. The selection of design
speed among available gas turbine drivers is limited, and the
pipeline industry has been reluctant to use gears. Therefore, in
Some cases it may not be possible to obtain the best specific
speed range with the driver épeeds available. However, effi-
ciencies ot over 80% within the specific speed range of 400 to
1350 can be expected with most single-~-stage impeller wheels.
Figure 7.3-2 shows how the maximum flow capability of a com-

pressor. changes depending on the head.[Walker, 1970].

Development of higher efficiency centrifugal compressors
is continually pursued by some of the major industrial firms.
For example, one of the leading gas turbine manufacturers has
achieved an optimum efficiency of 86% in a single-stage com-
pressor of 1.3 pressure ratio with a 24-inch-diameter impeller.
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However, the improvements in single-stage compressors cannot be
directly translated into multistage machines, which require some
compromises because of the broad range of flows and pressures in-
volved.

In a typical case, a given compressor configuration is de-
signed to handle a wide range of applications. For example, Fig.
7.3-3 shows a performance map of a Solar C505 centrifugal gas
compressor. Using the curves, it is possible to determine whether
a specific compression job is within the capability of this basic
machine, and how many stages would be required for the specific

site condition.

At the low heéds required for .pipeline service, the axial

- flow compressor could offer the possibility for a 6 to 8% im-
provement over current centrifugal equipment. ‘About 24 axial
flow compressors have been built and operated in closed-cycle gas
turbine power plants throughout the world; . the pressure
levels, volume flows, and heads are comparable to gas pipeline
requirements. Such a compressor, however, has two problems, one
in design and the other in operation. The design problem is that
of coping with the high bending loads imposed on the blading by
the high specific mass flow. The operational problem stéms from
the narrower operating range-from design point to surge at the
tip speeds dictated by available turbine speeds and inlet volume
flows [Robinson, 1972]. The axial flow compressor is also less
rugged, more complex, and more sensitive to damage from-ingestion
of foreign objects than a centrifugal type. With the efficiency im-
provements that are being made in centrifugal compressors, there
appears to be little likelihood that the axial compressor will

be built in any substantial numbers for pipeline service.

The reciprocating compressor is classified as a positive
displacement type machine in which a quantity of gas is drawn

into a cylinder, where its volume is reduced and its pressure

increased by movement of a reciprocating piston. Piston com-

7-16
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pressors are designed for pressures as low as 1 psi above atmos-
pheric or, with single stage compression, up to approximately

100 psi. When higher pressures are desired, the compfession is
divided into stages. The reciprocating compressor has the advan-
tage of higher efficiency than thé centrifugal compressor at the
higher pressure ratios, although in many applications the centri-
fugal can claim efficiency superiority at pressure ratios below
1.35as illustrated in Fig. 7.3-4 [Walker, 1970].

Many of the gas engine compressors used in pipeline applica-
tions are of the integral type, in which the power cylinders and
compressor cylinders are arranged in a V-angle configuration on
the same block and crankshaft. Normally such a machine has one
compressor cylinder for each two power cylinders. Other gas
engine compressors are fufnished as matched engine-compressor sets,
with the engine driving a separate compressor unit. Unloader
Valves used in the compressor cylinders are of various types, in-

cluding both poppet and plate valves,

Many of the reciprocating engine compressors installed in
natural gas transmission lines are operated in parallel with
centrifugal compressors. In most cases there are several of the
reciprocating engines with a large number of unloaders on the
compressor cylinders. The reciprocating engine compressor units
are usually of lesser capacity than the centrifugal compressor.
Station control is accomplished by the unloaders until the horse-
powér is reduced to permit shutdown of a unit. Since a centri-
fugal compressor impeller has an operating flow range of approxi—
mately 70 to 130% of the design flow, iﬁ is not desirable to use
a large centrifugal to handle the flow'swings of a station when
in parallel with reciprocating engines. It is much more desirable
to base load the centrifugal to a certain horsepower level and
allow the reciprocating units to handle the station swings [Walker,
1s579].

In general it is concluded that, as far as efficiency im-

provements are concerned, there does not appear to be any sig-
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nificant rationale for advancing the state of the art in the

compressors themselves by ERDA support.

Rather, as discussed

elsewhere in this report, the principal gains in efficiency will

come from the prime movers through-new design concepts and cycle

improvements.
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8.0 REDUCTION OF RESISTANCE TO FLUID FLOW

To examine the potential savings in both energetics
and economics that might accrue from significant reductions"
in resistance to fluid flow, some simulations were run using
the pipeline economic model (PEM), which was developed under
Task 1 of this proﬁect. The model is described in reports
R-3021 and R-3069 of this series (See Table 1.1-1 of this
report).

For the simulétion, the baseline petroleum products
reference system, with a linefill consisting of 70% gasoline,
5% avgas, 5% kerosene, and 20% No. 2 fuel oil, was compared
with the same system and linefill, but with viscosity reduced
by factors of two and five. Selected output results are
tabulated in Table 8.0-1. |

It is seen that for the 20-year period from 1976 to 1996,
a saving of $22.375 million in total energy cost could be
derived from reducing the viscosity by one-half and a saving
of $48.205 million from reducing the viscosity to one-fifth
that of the baseline case. Savings in present value of the
energy used are $6.516 million and'$l4.016 million for the
one-half viscosity case and the one-fifth viscosity case,
respectively. These savings figures -are obtained by comparing
the "Lnergy Costs" and'Present Value of Energy'Used" for the
three viscosity categories under the heading "Energetics"
in Table 8.0-1. They are attributable entirely to the in-
creased throughput which could be obtained by viscosity reduc-
tions alone and do not take into account any additional capital
.expenditures which might be involved in achieving the vis- \

cosity reductions.

The three primary methods of reducing fluid resistance
in pipelines are:

(1) Heating the fluid to reduce viscosity

(2) Using additives in the fluid to reduce viscasity



Table 8 .0-1

Viscosity Reduction Study*

Baseline Case

Viscosity reduced to %

Viscosity reduced to 1/5

Total (20 yr)]

Activity
Throughput (MM bbl/mi)

Revenues

Economics
Operating income(ICC Rules
Net income(book prafit)

Present value of book
profits

Net cash generated

Present value of net cash
generated

Rate of return on total
capital (%)

Energetics

Energy used (MM kw-hr)

Enercy costs. (MM $!°

Present value of energy

used (@10%) _

*
Dollars in thousands

Average Total Average Total Average
1,704,590.797 85,229.539 1,704,590.797 85,229.539 1,704,590.797 85,229.539
1,612,855.578 80,642.775 1,590,763.516 79,538.176 1,565,276.891 78,263.844
430,947.094 21,547.354 431,157.617 21,557.881 431,413.906 ~21,570.695

. )
375,137.840 17,863.707 375,348,352 17,873.731 375,604.641 17,885.935
136,608.590 6,830.429 136,787.037 6,839.352 137,004.424 6,850,221
302,389.715 15,119.486 302,600,223 15,130.011 302,856.520 15,142,826
115,793.697 5,786.185 115,902.142 5,795.107 116,119.530 5,805.977
8.470 8.470 8.472 8.472 B.474 8,474
5,577,754.250 278,887.711 5,022,350.187 251,117.508 4,381,353.437 219,067.672
225,170,787 . 11,258,539 . 202,796,303 10,139;815 176,965,961 8,848,298

65,065.001 - 58,549.497 - 51,044.112 -
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(3) Using internal coatings in the pipe to reduce friction.

8.1 Pipeline Heating to Reduce Viscosity

The use of heating in petroleum pipelines has been confined
primarily to relatively short length lines (100 mi or less)
carrying liquids such as heavy crudes and heavy fuel oils which
are too viscous to be pumped at ordinary ambient temperatures.
Practice in the past has been to heat the liquid to a temperature
much above its pour point (often from 140°F to 210°F) at the
initial pumping station, then pump it through an insulated pipe-
line, kept hot by running a parallel, smaller line carrying steam.
On such lines the pumping stations are usually spaced closely

together and the o0il is heated at each station.

Polyurethane foam coatings have been used for thermally
insulating pipélines for more than 10 years, but extensive use
of these coatings has occurred only since about 1970 [Hale, 1973].
More than 600 mi of insulated pipeline of all sizes, including
length of pipeline up to 100 mi, have been installed since that
time. The value of polyurethane foam for thermal insulation
lies in the fact that it has the lowest value of thermal conduc-
tivity (0.13 Btu/sq.ft/hr/°F/in-per ASTM D2326) of all commercial

insulation materials.

Another method of heatihg developed more recently uses a
concept known as "skin effect current tracing" (SECT). This
system, as illustrated in Figs. 8.1-1 and 8.1-2, uses the prin-
cipal of skin effect, whereby a conductor is placed inside a heat
tube and grounded to the far end of the heat tube [Hutson, 1976].
The heat tube is welded to the exterior of the carrier pipe, which
is common carbon steel pipe. An AC potential is applied between the
heat tube and conductor, Causing an alternating current to flow down
the conductor and return on the inside of the heat tube. The devpth

of penetration (skin depth) of the current is related inversely to

. 8-3
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the square root of the frequency, relative magnetic permea-
bility of the heat tube, and conductivity of the heat tube.
The welded contact between the heat tube and the carrier pipe
provides a heat flow path, and the temperature of the heat tube
is normally not more than 15 to 20 degrees higher than that

of the fiuid. At the SECT control center, a transformer (Fig.
8.1-2) is provided for stepdown of the high voltage power
supply, and temperature controls are used to maintain the
required temperature settings. For.most applications, one
heat tube is used for fluid pipes up to 12 inches in diameter,
two tubes for intermediate sizes and three or more tubes on

pipes larger than 30 inches in diameter.

The SECT system was developed in Japan and is licensed to
the Ric-Wil Co. of Canada and its subsidiary, Pipe Heating
Systems, Inc., of Brecksville, Ohio. It has been used for
heating pipelines carrying viscous crude, heavy fuel oil,
molten sulphur, chemicals, etc. Approximately 45 systems
have been installed in the United States in lines ranging up

to about 10 mi long.

The effect. of temperature on liquid viscosity may be corre-
lated within the accuracy of most experimental data (1 to 2%)
with the de Guzman-Andrade equation.[Perry and Chilton, 1973].

/L{ = ACB/T .

This requires knowledge of two or more vaiues of (4 for evalua-
tion of the constants A and B. Whan only one value of M is

known, the temperature dependence may be obtained within approxi-
mately 20% with the generalized chart shown in Fig. 8.1-3 [Perry
and Chilton, 1973). The chart is based mainly on data for organic
liquids and is representative of liquids sSuch as crude oil and
petroleum products. It is evident that heavy liquids expeéerience

a much greater change in viscosity with changes in temperature.

than lighter liquids. This can be illustrated by the follow-
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ing example, which compares the viscosities of two typical crude

oils at two different temperatures [Baumeister and Marks, 1958].

Temperature Viscosity
(°F) (Centipoises)
California crude, light 60 48
' . 1590 9
california crude, heavy 60 3500
' ‘ 150 70

To assess the economics of heating pipelines to reduce friction
losses, discussions were held with pipeline heating system contractor
representatives. They ‘indicated that such systems range in cost
from about $1 to $5 per diameter inch per linear foot of pipeiine,
depending on the location of the pipeline, the temperature/viscos-
ity characteristics of the fluid pumped, and a variety of other
factors. (Refer to Table 8.0-1). '

Using the most optimistic estimate of $1/diameter inch/linear
foot for the heating installation, the total increase in capital

cost of reference the pipeline would be:

-

24" diameter x 5280 ft/mi x 686 mi x $1/in-ft
= $87 million.

Since the present value of the energy saving, at the postulated 20+~
year average cdsf of 0.037 $/kwhr which was used in the comparison

of Table 8.0-1, line 11 was only $14 million, it is seen that the
cost of energy would have to increase by‘mére than a factor of six

to even pay for the installation. It seems obvious from this com-
parison that the use of heating in a long distance petroleum pipeline
is not economically practical and will not be in the foreseeable

future.

It is concluded that pipeline heating is a well established
technology for assisting in the pumping of viscous liquids for rela-
tively short distances, but would not be economically attractive for-
long distance pipelines until energy costs were much greater at

present and also probable until insulation costs were less.

8-7
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8.2 Internal Coatings to Reduce Viscosity

" Results of various tests and applications over the past 30
years have proven that internal coating of pipelines is an effective
method of increasing pipeline flow efficiency. 1In addition to
increased throughput, internal coatings provide other advantages
including: protection against corrosion; reduced cost of scrubbers,
strainers, pigs, and other types of pipeline cleaning equipment;
prevention of contamination from corrosive products; reduced main-
tenance and labor costs; protection of pipe interiors against '
accumulation of foreign materials; and reduction of leakage from

pipelines.

Epoxy-type internal pipe coatings are currently being used
in pipe for transmitting dehydrated natural gas, wet gas, crude oil,
sour crude oil, salt water, fresh water, and petroléum products.
Thousands of miles of internally coated pipelines are in service,

with pipe sizes ranging from 2 inches to 42 inches.

Two principal methods of application are employed.for internal
pipe coatings - "in situ" (or "in-place"), and spraying [Kut, '67],.
In-situ coating is applied to lines already laid and avoids the w
Welding problem. Historically, the first coating of this type was
carried out in 1947-48 in sour crude and sour gas éathering lines.
The first in-situ salt water lines were coated in 1953, and potable
water the following year. 1In-situ coating is a highly specialized
procedure, and only a few companies operate in this field; however,
as a result of experience in North America, Europe, and other areas,
ample background is now available, enabling the in-situ coating
applicator to use a proven coating, specifically selected for the

particular service requirements.

Spray application of internal_pipe coatings to individual
joints of pipe is the second procedure. Suitable spray and cleaning
equipment is available today for internally coating small- and large-
diameter pipes, with appropriately formulated epoxy-type coatings,
following sound surface preparation such as abrasive blésting or

acid cleaning.
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The largest spray application of epoxy coatings is for internal
coating of natural gas lines. The requirement here is not primarily
to give a protective film, but to provide a smooth coating to im-
prove throughput. A thin film, on the order of 1.5-2 mils, is applied,
following surface preparation by a rotary wire brush. Complete main-
tenance of film integrity is not essential for this usage, and the

welds will inevitably not be fully coated.

Internal coating of gas transmission pipeélines started in
1953. At the inceptidﬁ of this dévélopment, many questions were
raised as to whether the coatings used would have the necessary
properties, and whether the cost of internal coating would be off-
set by the resultant benefits. These questions have been largely
resolved by close cooperation between coating manufacturers, gas

transmission companies, and engineers.

Of the many tests made to evaluate the advantagés claimed for
internally coated pipe, the most elaborate have been those concerned
with increased throughput. Extensive work has been carried out to
measure the smoothness of pipeline internal surfaces, both uncoated

and coated.

In 1955 the Institute of Gas Technology (IGT) conducted a
project‘titled "NB-14 - Internal Coating of Pipe ", under the
sponsorship of the pipeline research committee of the American Gas
Association. 1Its purpose was to evaluate the feasibility of inter-
nally coating pipe for gas pipeline service. As part of this pro-
gram, some 10 different generic resins were evaluated, involving
25 coatings, including vinyls, alkyds, polyvinyls, furanes, coal
tar epdxies, phenolics, and neoprene coatings. Results showed the

superiority of the epoxy-based type.

A related project, No. NB-13, was established by the pipeline
research committee at IGT to investigate pipeline flow efficiencies.
The results of this study showed that, for the ranges of flow and
Reynolds number encountered in most large-diaméter pipelines, the.‘

flow efficiency is dependent on pipe roughness and independent of
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Reynolds number. As part of its work, the pipeline research com-
mittee developed a new flow formula in which the effective rough-
ness of the pipe is used as a factar. The follo@ing table compares
flow efficiency with effective surface roughness of 36-inch pipe -
based on this new flow formula.

o Effective surface Pipeline flow
Type of 36" pipe , roughness (in.) Efficiency (%)

Internally coated 0.00028 103.8
Very smooth commercial 0.00045 100
Average commercial ‘ 0.007 96.5

Stored 0.0013 91.6

During this same time period, Transcontinental Gas Pipeline
(Transco) conducted an experimental test program on 1199 miles of
internally coated pipeline ranging from 20 .to 36 inches in diameter-
[Crowe, 1959]. Various percentages of pipeiine were coated on
different sections. Epoxy resin type coating was used, since engi-.
néering studies had indicated it to be the most desirable for the

purpose; the results of NB-14 confirmed this thinking.

After the first internally coated pipe was installed in 1955,
the pipeline flow test data failed to reveal conclusively that
internal coating was economically justified. For the next two
years, the flow tests showed some indication of increased efficiency
and were encouraging enough to Transco management to continue the
program to the extent of designing for and considering the effects
of internal coating on all main line additional facilities for ex-
panding their system. Costs for cleaning the pipe and applying'an
epoxy coating varied considerably'due to methods of manufacture,
rate of productioﬁ, and other faétors. However, a general rule
of thumb at that time for estimating costs of materials, applica-
‘tion, and handling was to allow one cent per diameter ingh per

linear foot, with the smaller sizes of pipe running slightly higher.

8-10
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Another'project conducted during the late 1950's involved
a series of tests on an 11.9-mile section of 24-inch OD x .250-
inch WT pipe which had been in continuous service in the Tennessee
Gas Pipeline Co. system for 10 years. The tests were part of a
joint project under the auspices of eight gas pipeline companies
and two companies specializing.in pipe coatings [Klohn, 1959]. The

project was organized in three phases:

Phase 1 - The section was tested after 10 years of operation,

Phase 2 - The section was cleaned with two separately run
wirebrush pigs, and tested after ‘cleaning.

Phase 3 - The section was cleaned with .two wire brush pigs,
followed by a 3000-gal. plug of Ketone as a
detergent. The line was then coated with an epoxy
and tested.

The results of testing at various flow rates in each phase showed
that pipeline deliverability was increased by approximately 5 to
10%, depending on the rate of flow. This increase was broken down
to a nearly constant 4% increase directly attributable to the
cleaning operation of Phase 2 and an additional 1 to 6% directly

attributable to the work done in Phase 3.

The tests satisfied the overall objective of the project,
which was to answer the question of whether the condition of the’
internal pipe surface has much of an effect upon the deliverability
in a large-diameter pipe in commercial service. This question is
answered by examining Fig. 8.3-1. The total increase in the trans-
mission factor, which is directly proportional to deliverability,
varied from approximately 5% at‘a Reynolds number of 7 million to
about 10% at a Reynolds nuimber of 7 million to about 10% at a
Reynolds number of 18 million. The tests were repeated on the in-
ternally coated pipe in December 1959 (a year after the original
tests) and, as indicated in Fig. 8.3-2, the results showed good
correlation with the previous test results. From this it was con-
cluded there had been no apparent deterioration of the interior

coating. . -
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A significant recent application was recorded in 1973 when
Signal 0Oil and Gas Co. completed the in-place internal coating of
an offshore gathering system. Included in the system were 3 1/2
miles of two 12-inch and one 10-inch lines connecting platforms,
and a 21.3-mile, 12-inch main line. All lines were internally
coated with a polyamid-activated epoxy. Cleaning and coating oper-
ations on the gathering lines were carried out simultaneously from
‘the platforms( and, con the main line, from a platform and an on-
shore site. Despite the fact that underwater tie-ins were involved,

the use of divers was not required.

Another potential application for epoxy coatings is for pro-
tection against corrosion and metal loss within the interior surface
of slurry pipelines. A recent paper [Jacques, 1977] evaluated al-
ternative mefhods for corrosion control against various system para-
meters including capital cost, operating cost, and user suitability,
environmental effects, effects on transport system, and flexibility.
The alternative methods considered were heavy wall pipe, thin wall
pipe with inhibitor, thin wall pipe with lining, thin wall pipe
with oxygen removal, and thin wall pipe combination. The two methods
involving internal coating, i.e., thin wall pipe with lining and
thin wall pipe combination, ranked the most favorably on a cost
comparison basis. The evaluation of thin wall pipe with lining was
generally favorable otherwise except for concern expressed in assuring
a continuous coating free of pinhole leaks. The cost figures for
thin wall pipe with lining were based on applying 20 mils dry film
thickness of epoxy lining. There is reason to believe that ample
protecfion for a 25 to 30 year operating span could be provided
with only 9 to 12 mils thickness of epoxy lining, which would make

the cost comparisons even more favorable,

A current rule of thumb for estimating the cost of intern-
ally coating a new pipeline, as indicated by contact with one of
the leading coating companies [Séefeld, 1977] is to use 15 cents
per diameter inch per lineal foot for 6 mils thickness of epoxy

coating, applicable to water, gas and petroleum products. For
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slurry, the figure would be 25 cents per diameter inch, based on

20 mils thickness of coating. These figures would apply for rela-
tively short lengths of pipeline (up to 10 miles) and would be
somewhat less for long pipelines. For in-situ coating of existing
pipelines, there is no reliable fofmula for estimating costs,
because of the highly variable nature of the cleaning and processing

required.
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8.3 Additives to Reduce Viscosity j

_ The use of soluble additives to reduce the
pressure loss associated with flow through pipes and tubes has
been studied intensively since 1964. Although the data are con-
fusing and sometimes contradictory, the indications are that a

significant drag reduction can be obtained.

The theoretical basis for drag reduction by additives gen-
erally derives from modifications to the boundary layer of the
"flowing fluid. 1In the case of solid additives, particles with
a high length-to-diameter ratio are apparently more effective
than particles with other shapes. Several investigators attrib-
ute this to the alignment of the lenticular particles parallel
to the direction of flow and the resultant modification to the
laminar and fransitional boundary layer adjacent to the channel
wall. In the case of soluble additives, a similar phenomenon
on a molecular level is postulated, since experimentally it is
found that long-chain organic molecules have the most pronounced
effect. ‘

The most convincing explanation for the phenomenon of
drag reduction is that propounded by P. S. Virk [Virk, '75].
His model is based on flow experiements with water as the
solvent and with solutions of polymers at concentrations up
to 300 ppm. The results of these experiments agree qualitat-
ively with carefully conducted experiments by R. J. Hansen
et al. at the Naval Research Laboratory} also with water as
the solvent [Little, et all. Experiments with organic solvents

[Ramakrishmaro et al] are also in qualitative agreement.

AE a Reynolds number of 10,000, the minimum friction factor
attainable through drag reduction, according to Virk's equa-
tion, is 36% of the Newtonian friction factor; this is equiva-

lent to a 64% reduction in pressure drop and pumping energy.
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Virk's model postulated an elastic sublayer between the
usual laminér boundary layer and the turbulent core; the hypo-
.thesis is that all drag reducticn is related to the thickness
and properties of this intermediate flow region. Historically,
the analysis of friction losses in flow systems starts with
the velocity distribution across the channel. For flow in pipes
and tubes, a wide rahge of data 1is correlated in terms of
universal velocity (U+) and position (y+) parameters as shown
in the semilog plot of Fig. 7.1.2-1, taken from Brod [Brod, 1971].

For a Newtonian fluid in turbulent flow, two principal flow
regions are observed as indicated by the curve A-B-N. In
cases where drag reduction is observed, the Newtonian turbulent
flow line is displaced parallel to the line B-N to form a
velocity profile such as A-B-~C-D, consisting of three flow
zones: the turbulent core, the laminar boundary layer, and the
intermediate "elastic" layer with the thickness represented'by

the horizontal "distance" between the points B-C.

The characteristics of drag reduction can be seen from
this figure. The primary effect is that a higher mean velocity
is observed for the same friction factor. This desirable effect
apparently is a result of the significantly lower specific energy
regquired to sustain turbulent flow of the system in the pre-
sence of the additive. The mean velocity increases above New-
tonian velocity across the intermediate elastic sublayer, which
extcnds from about 15<y+<60. This effec¢tive slip is the explan-
ation for the drag reduction phenomenon, according to Virk's
model. '

For practical application of drag reduction to design, the
usual correlation of friction factor with Reynolds number is
used, being derived by integration of the velocity profile 6f
Fig. 8.2-1 over the cross section of the duct. The form of
this correlation is:
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-1 ~ %,
£7F = (4.048) 1ogl-0 (Re £7) - 0.4 -flog,, (/2aw®)

where
d, W° = parameters of the drag reduction system,
experimentally determined
Re = Reynolds number of the solvent
d = pipe diameter.

Pipeline tests of drag-reducing additives have shown vis-
cosity reductions of 48%, equivalent to a reduction in turbulent

flow friction factor of 15%, which would also be the reduction
in pump energy. ‘ -

In report R-3022 (see Table 1.1-1 above), Sections 4.4.2.2
and 4.5.2.2, the annual energy costs of U.S. o0il pipelines
were seen to be 127 § million each for crude and products
lines, or a total of 254 $ million. The upside potential cost
saving is thus 38 $ million/year, or 2.5 $ million for each
point of efficiency gain. AClearly, a well-conducted R, D and
D program‘shouid be highly cost effective, and it is according-

ly recommended that such a program be undertaken.



r\

46 6010

4 CYCLES X 70 DIVISIONS  MADE IN U S A,

BEMI-LOGARITHMIC

K-E

KEUFFEL & ESSER CO.

Il

[

5

i

1l

. Effective Slip

| Viscous Sublayer ;ﬁ“




R-3025

9.0 OTHER IMPROVEMENTS

9.1 Cybernetics of Pipeline Systems

Cybernetics is a term coined by Norbert Wiener as a
name for the science of information and control in complex
systems. The science is now a well developed body of knowledge
which is applied to practical systems through high speed, large
memory computers,which assume many or all of the functions pre-
viously performed by human operators. Automation is a term

which is often applied to this process.
The three major functions within a éybernetic system are:

1) The collection of information relative to the state

of the system.

2) The processing of that information, along with what-
ever operator input may be required, through an algorithm
which calculates the necessary control action.

3) The effectuation of the necessary control.

Functions 1) and 2) involve information and control only, and
they can be performed by equipment which performs no other
function and therefore operates independently of the pipeline
system. This equipment is generally electronic, e.g., micro-
wave communicators and high-speed computers. However, func-
tion 3 must be performed by equipment which is part of the pipe-
line system proper, i.e., motors, engines, pumps, valves, etc.,

and therefore performs noncybernetic functions as well.

Earlier, Section 4.3.6.1 presented a detailed discussion
of duty cycles in product pipelines. There it was seen that
such pipelines operate at steady state only when the entire
" linefill is a single product. However, this situation sel-
dom 6btains, and therein lies an opportunity for energy con-
servation. The existence of that opportunity was identified

in Section 4.2.2, and the recommended approach to lifting
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of equipment limitations and solution of the associated

problems was presented in Section 4.3.6.2. However, those
discussions only treated function (3), the effectuation of
necessary control, and showed that the ojbective is infinitely
variable pump speed control, and recommended tﬁe fuel cell-DC
motor approach. The cybernetic functions (1) and (2), the
communication and control functions, still remain to be addressed.
As noted earlier, these functions are generally performed by

electronic communications equipment and high-speed computers.

The following discussion of these applications is taken
~ from Carter [1974]. ‘

Pipeline scheduling involves collecting and processing
information from all shippers desiring movements as to the
grade and quantity of the material to be moved, its origin

‘and destination, and the approximate timing to assure that.
the various movements will arrive at the proper destinations

on a timely basis.

After the schedulers have completed their work, they
normally present a monthly schedule of movements to another
group of people to handle the day-to-day, hour-by-hour,
minute-by-minute aétivities necessary to carry out the schedule.
These people are usually called dispatchers. Their functions '
and responsibilities'are listed below.

1. The dispatcher must be assured that the material

he receives is of proper quality and grade.

_ 2. The dispatcher must accurately measure the volume
received for each shipper and credit it to his

account.

3. The dispatcher must keep accurate accounts of the
location of the head-end and tail-end of each batch of
. fluid moving through the line.
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4. A dispatcher must deliver the proper amount of the
right grade and quality product at the right
destination for each shipper.

5. A dispatcher must be assured at all times that his
inputs equal his outputs, taking into consideration

the fluctuation of working tankage.

6. All movements throuéh a pipeline system must be

accounted for and the proper charge assessed to them.

This dispatching function is the 24-hour/day, 7-day/week,
nerve center of all pipeline systems. Dispatchers have at
their fingertips the means for checking amounts of inputs
and outputs and the flow through the pipelines by reading
meters and guaging tanks remotely. They must have constant
check on pressures to keep from bursting the pipelinesi The
quality and grade of the petroleum moving through the lines
is known at all times through remote reading gravitometers,
BS&W (basic sediment and water) monitors and other similar
devices. All these are data needed by the dispatchers to
evaluate and assure them the line is running properly and
safely. The dispatchers direct tank farm personnel in
switching tanks off or on the system and are in constant }
communication with deliverymen and gaugers, giving instructions
as to the time, quantity and quality of material to be delivered
at locations throughout the system. Practically all the work ,'
done by a pipeline company is dependent upon effective dispatch-
ing. ‘

The dispatching operation is being automated in various
ways by each pipeline company by using the electronic innovations
of our day. 1In the early 1970's, Pipe Line Company advanced

beyond the dispatching operation just described to a centralized

Control Center operation. This Control Center combines the
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tremendous calcuiating capacity and data handling ability
of the computer with the logic of the scheduler and the

minute-to-minute instructions and logic of the dispatcher.

The use of computers and automation in the area of
pipeline operations and control has been growing almost
exponentially since the mid-1960's. A 1973 Survey on Computer
Usage by the API showed that 57% of the pipeline companies
were using computers for some type of operational application
and that 33% were using computers for data acquisition and
control. This compares with only 34% of the companies using
computers in operational areas in 1962. In 1962 there were
no on-line computer applications in the pipeline industry,
and only three companies were studying on-line data acquisit-

ion in the mid-sixties.

On-line computer installations, such as that illustrated
schematically in Figure 9.1-1,for data acquéition, dispatch
calculations, and control are commonplace. In the future,
they will be extended to all types of data. In addition to
the present on-line readings for tank gauges, meters, temperat- -
ures, pressures, gravity, orifice flow rate, and interface
detection,_there will be on-line readings in the future for
BS&W sampling, viscosity, vapor .pressure, flash point, and
even friction loss coefficients for dynamic hydraulic |
¢alculations. The principal advantage of on-data acquisition,
is, of course, that it is must faster than obtaining telemetered
readings by manual display, or over the phone for copying,
and it is also more accurate. By 1974, 18 companies were
known to have on-line data acquisition applications represent-

ing some 4000 on-line readings.

Dispatching calculations performed at a central computer
location offer a tremendous advantage, especially when coupled
with on-line data acquisition, because the computer can make

these calculations both rapidly and accurately. These are the
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types of dispatch calculations for keeping track of tankage
and line inventory, calculations for receipt and delivery
volume movement, into and out of the line, line fill update
(or batch tracking), batch arrival time, and line oVer and -
shdft calculations. In 1974 there were five companiesrthat
reported doing some type of dispatch calculations using on-

line data.

There are definite advantages in having the remote
unattended pump stations connected to the central computer
for on-line control and interrogation of supervisory control
status functions, as illustrated in Figure 9.1-2, Supervisory
control equipment can be defined as equipment for controlling
and supervising Ehe status of some device, such as a motor or
valve, over a communicaﬁions circuit. The same equipment '
is used to telemeter pressures, temperatures, or tank gauges.
The computer in this case. has the ability to communicate with
the remote control functions, and programs may be designed to
perform certain control functions such as starting a pump unit
at a specific time; or the program may or may not entail
closed-loop operation. The computer can be tied to the remote
supervisory control equipment to control pumping units, valves,
and set-point controllers as well as to pick up supervisory
status of alarms, pumping units running,etc. Another advantage
of on-line control is that status information can be internally

stored in the computer for hard: copy output and records,

In 1964, ARCO Pipe Line installed what is believed to
be the first on-line computer control system in the liquid
pipeline industry. The operation of the system has been very
successful and it has proved to be an economically justifiable
endeavor. The system encompasses some 3200 miles of crude
and products pipelines, 450 data acquistion points for tank

gauge, meter, temperature and pressure readings, and performs
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some 370 independent supervisory control functions,

including alarm and pumping units running status interrogation.

As technology and programming systems are developed,
more and more sophisticated closed-loop programs are being
implemented for controlling startiﬂg and stopping of pumping
units, automatic switching of tankage and terminal manifold
valves, preésure and flow set point control, and controlling
upset conditions in general by closed-loop action. Some of

these functions are illustrated schematically in Figure 9.1-3

Closed-loop control on the pipeline means that the
computer, through its program logic, senses a condition and
instigates some type of controlling action on its own without
manual intervention. There can be varying degrees of closed-
loop control. Pipeline segments may have only partial closed-
loop control for a few functions, or the entire system may
be under closed—lbop control. The control may vary from a
simple set point control of a suction pressure based on on-line
calculation for arrival time of a different product, to the
ultimate in which a schedule determines the closed-loop action
for starting and stopping the pumping units, switching manifold.
valves, controlling optimum pumping units, and automically
handling upset conditions. From a safety standpoint, closed-
ioop operations give faster reaction-control than manual
operation in sensing upset conditions, e.g., pressure surges
and other abnormal opérating conditions, and in taking corrective

action.

ARCO Pipe Line Company has a 185-mile section of 8-inch
line from Western Oklahoma to near Shawnee, Oklahoma, which
has nine injection stations on closed-loop control, as shown in
Figure 9.1=4., This line handles a low vapor pressure crude and

condensate and a high vapor presssure stream of natural gasoline
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and butanes. The material from each of the nine points must

be injected into the proper batch of compatible material as

it passes the'injection point. The computer control system

reads the various meter readings, calculates the updated line
fill and batch arrival times, determines if and when a pumping
unit is to be started or stopped, and then initiates closed-

- loop action to block or clear the injecting pumping unit at

the proper time. The program also alerts the operator to any ab-

normal conditions that are detected.

The fastest-growing current recent'development in the use of
computers for pipeline automation is the use of the mini-

computers. Figure 9.1-5 illustrates the application potential

ARCO has an IBM System/7 computer at their Humbéldt,

Kansas, Tank Farm pump station. This computer is designed to:
1. Effect station control
2. Acquire data

3. Maintain surveillance of operating conditions

and protective controls

4, Transmit data to and receive data from the central
IBM 1800 System computer at Independence,

Humboldt Station is a relatively simple tank pump station
operation. The station has 4 main line pumping units, 3 booster
pumps, 14 tanks wilh tank mixers, and 2 positive displacemenf
meters with meter proving facilties. The station operates

on a 24-inch pipeline system, handling 6 grades of crude oil.

The computer is programmed to perform a majority of the
operating functions presently being done by the man. The most
unique function theicomputer will do is £he sensing of gravity
of the incoming streams to épprépriate tankage as required.

This and other functions programmed into the computer will
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permit unattended operation at the pump station except for

daylight maintenance, housekeeping and custody transfer functions.

The computer is interfaced to the existing pipeline station

equipment and instrumentation, both analog and digital, in four

major categories, according to type of operation :

l.

It functions as a station controller by
switching tankage manifold valves, based on
schedules suppiied by the central computer or
by interface detection from the gravitometer

of the incoming line. It also starts and

stops main line pumping units, booster pumps
and tank mixers on a schedule supplied from the

central computer.

The computer acquires data from tank gauges and
meter readings each hour or on demand, and
pressure readings, temperatures, gravitometer,

sump tank level, etc.

The computer operates as a surveillance device
of the critical station operating conditions for
safe control. It reads pressures, temperatures,
sump tank levels, checks operating limits, and
takes necessary action if any of these readings
are out of predetermined limits. It checks
pumping unit running conditions and valve
positions every minute. It detects abnormal
operating conditions such as excessive pump

unit vibration, excessive seal ledkage, high
tank levels, etc., and takes whatever corrective
action is necessary. If corrective action is
necessary, the computer alerts the'Control Center

operator at Independence of the malfunction
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condition and in some cases places a
telephone call to an on-call station
attendant in Humboldt.

4, The computer is tied diréctly to the central
on-line computer in Independence by microwave
communications and relays various instructions
fof pumping schedules, batch arrival times,
pump unit start and stop schedules. It also
transmits hourly data on volumes received and
pumped, tank leve}s, pressures, temperatures,

and any pumping unit or valve changes.

The basic pump station design is such that in the event
of any failures, a safe condition is maintained.. This basic
analogy is also carried through to the programs within the in-
station mini-computer, and the operation of the pump station

continues in a safe manner if the computer also fails.

Eventually computers will become the heart of complete
management information systems whereby on-line data, operating
information, and billing data of each shipper will be directly
available to those shippers that are equipped to-use it. All
major operating records and statistical data will be kept on
disk storage data files within the computer system for immediate
fetrieval. There will be CRT display units, or other terminal
units, in the pipeline offices of the schedulers, oil movements
managers, and financial managers, so that they can call for the
latest up-to-date information required to perform their duties.
There will be computer-to-computer tie-ins with computers and
terminals at the shipping companies and other pipeline offices
for direct access of operating information; for obtaining the
latest scﬁedul;ng information, inventory volumes, and shipping

forecasts.
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The foregoing discussion shows that the use of computers
to control pipeline operation is a proved and well-accepted
method of reducing oil operating costs. Additionally, a
literature search revealed that more than 100 articles have
been written on the design of, and operating experience with,

automated and computerized gas pipeline systems.

In almost every case, reports indicate that decisions to
automate were made after very careful study, and results have
been very satisfactory. Some operating companies are retirihg
existing systems in favor of more sophisticated new systems.

In general, computef systems offer system control, optimizat-
ion, information display and reporting, and telemetry capabil-
ities. ‘ '

The literature review has also revealed that at least six
companies offer automation systems equipment design and/or
installation. 1In mény cases the programming of the controllers
is accomplished as a joint venture between the pipeline.company

and the controller supplier.

Some of the major suppliers of compression and pumping
units used in pipelines have also developed the capability for
computing physical parameters affecting machinery selection,
and have .rendered valuable assistance to the pipeline customer

in optimizing system controls.

In view of the well-established position of computer
optimized control in the pipeline industry ahd the continuing
effort within the industry to introduce further improvements,
there does not appear to be any reason for ERDA-supported R&D

in this area.

9-15
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9.2 Leakage Inhibitors

9.2.1 Leakage in Liquid Pipelines

Leakage from oil and gas pipelines accounts for-a
considerable proportion of total operation expenses. It also
represents an energy loss, and reduction of leakage is there-

fore a matter of prime interest in this study.

The ICC does not publish summaries of financial and
operating statistics of oil pipelines. However, the individual
pipeline companies submit annual reports containing such data
to the ICC. These reports contain operating expense accounts
which include as one of the items, "Oil Losses and Shortages."
Comparison of this figure with the Total Operations EXpenses
gives an order of magnitude indication of losses due to lead-

age.

Under Task 1 of this 'study, estimates of total energy
consumption and of energy intensity were deQeloped and present-
ed in report R-3022 (see Table 1.1-1 above) of this series.
Tables 9.2.1 and 9.2.1-2 are replications of Tables 4.4-1 and
5.4-1 of that report. A comparison of columns 3, 4, .and 5
is interesting for several reasons. First, oil shortages
and losses are seen to be significant, i.e., about 6%, in
comparison with fuel and power costs. Second, they are also
a significant fraction, that is, almost 20% of non-fuel
expense. Third, extreme variations are seen from company to
‘company, in some cases assuming large negative values. 1In
fact, the second-largest absolute magnitude in the losses

and shortages column is a negative number.

This latter observation indicates that further research
would be required before any conclusions and/or recommendat-
ions regarding energy conservation can be developed from these

figures. Clearly while the companies are most certainly

9-16



LT-6

Table 9,2-1:

MAJOR CFUDE OIL PIPELINE COMPANIES - U.S. INTERSTATE TRUNKLINES, 1976

COST INTENSITY ANALYSIS

8 9 10 11 12
4 5 ’ 6 7 Avg. % of Tot. Total Operating
3 0il Losses Total Operat- Fuel & Power Ship- Operating Expense
1 2 Fuel & Power &Shortages ing Expense S/um S/M ment Expense $/MM, $/M

Ccmpany MM B-Mi M B $ $ $ B-Mi B Mi Col.3 Col.A4 B-~-Mi B
Lakehead 293,629 391,540 18,507,533 832,231 23,206,770 63.03 47.27 750 79.8 3.6 79.03 59.27
Amoco 190,548. 410,263 16,878,116 - 22,188,¢19 B8.58 41.14 464 76.1 - 116.45 54.08
Shell 128,236 '368,829 9,987,771 4,628,156 17,888,104 77.89 27.08 348 55.8 25.9 139.49 48.50
Mid-valley 107,98¢ 142,803 9,977,C52 104,559 11,261,282 92.39 69.87 766 88.6 9.3 104.28 78.86
Texas Pipe 94,083 335,957 6,668,842 397,358 9,143,089 70.88 19.85 280 72.9 4.3 97.18 27.22

Line Co. . .

fobil 93,114 3os,884 8,401,€43 415,253 10,582,953 90.23 27.20 301 79.3 3.9 113.73 34,28
Arco 81,258 239,406 7,159,934 515,104 10,724,514 88.11 29.91 339 66.8 4.8 131.98 44.80
Marathon 63,480 256,586 5,646,913 (1,950,054) 4{974,345 88.96 22,01 247 113.5 (39.2) 78.36 19.39
Exxon 62,111 445,637 6,178,988 1,417,716 10,988,270 99.48 13.87 139 56.2 12.9 176.91 24.68
hshland 52,542, 76,148 3,594,068 665,964 5,007,641 68.40 47.20 690 71.8 13.3 95.31 65.76
West Texas €2,392 131,873 2,255,450 .(90,901) 2,823,009 43.05 17.10 397 i9.9 (3.2) 49.19 21.41
Pipe Line
Southcap 44,234 69,378 2,393,579 - 2,649,767 54.11 34.50 638 90.3 - 59.90 38.19
Platte 35,357 51,307 1,821,852 - 2,165,823 51.53 35.51 689 84.1 61.26 42.21
Portland 23,322 140,242 3,082,364 872,086 4,173,679 132.19 21.98 166 73.9 20.9 178.96 29.76
Chicap 23,285 118,014 1,914,162 - 2,114,390 82.21 16;22 197 90.5 - 90.80 17.92
Texaco- 22,715 109,398 1,915,315 (51,751) 2,787,382 84.34 17.51 208 68.7 (1.9) 122.71 25.48
Cities Service
Pure 20,939 93,228 1,825,319 12,325 2,861,435 87.17 19.58 225 63.8 4.3 136.66 30.69
Texas-llMex. 16,567 155,154 1,183,487 (30,687) 1,601,305 71.44 7.63 107 73.9 (1.9) 96.66 10.32
Owénsboro- 16,033 54,348 538,092 (365,191) 373,886 33.56 9.90 295 143.9 (97.6) 23.32 6.88
Ashland
Minnesota 13,330 51,304 2,553,828 (126,291) 2,706,174 191.58 49.78 260 94.4 (4.7) 203.01 52.75
Cities 12,788 104,546 1,115,491 (38.946) 1,629,096 87.23 10.67 122 68.5 (2.4) 127.39 15.58
Service

gotal 1,447,949 4054,845 113,600,990 7,206,931 151,858,533 78.45 28.01 357 74.8 4.7 104.87 37.45

verage

Source: ICC Annual Reports "P", Pipeline Comnanies, 1976
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Tahle 9,2~2
MAJOR PETROLEUM PROCUCTS PIPELINFE COMPANIES - U.S. TRUNKLINES, 1976
) COST INTENSITY AWNALYSIS
8 3 " 10 11 12
4 5 6 7 Avg. % of Tot. Total Operating
3 0il Losses Total Operat- Fuel & Power Ship- Operating Expense.

) 1 2 Fuel & Power &Shortages ing Expense S/MM S/M ment Expense S/MM, S/M
Company MM BR-Mi M B $ $ S B-Mi B Mi Col.3 Col.4 B-1i B
Colonial 591,688 569,396 56,503,564 127,388 \64,383,213 95.50 99.23 1039 87.8 0.2 108.81 113.07
Plantazicn 105,64C 186,089 9,059,872 372,462 13,682,728 85.76 48.69 568 66.2 2.7 129.52 73.52
Texas Eastern 65,57b 115,518 5,090,446 657,295 9,182,267 77.63 44.07 568 55.4 7.2 140.03 79.49
Williams ’ 62,463 177,781 7,756,856 - 14,029,105 124.18 43.63 351 55.3 0] 224.60 78.91
Mid-America 42,577 103,648 3,971,866 (478,014)‘ 6,249,930 93.29 38.32 411 63.6 (7.6) 146.79 60.30
Explorer 33,805 59,029 1,730,074 623,459 3,312,077 51.18 29.31 573 52.2 18.8 97.98 56.11
Southern 256,080 206,846 4,648,535 67,154 8,566,931 178.24 22.47 126- 54.3 0.8 328.49 . 41.02

Pacific
Dixie 18,797 29,078 2,155,141 445,103 3,453,575 114.65 74.12 646 62.4 12.9 183.73 118.77
AHydrocarbon 18,474 27,364 3,670,318 - 5,262,716 198.67 134.13 675 69.7 0 284.87 192.32
Wolverine 13,009 83,276 2,615,420 193,035 3,855,490 201.05 31.41 156 67.8 5.0 296.37 46.30
Olympié 12,838 68.424 985,814 - 1,724,286 76.79 14.41 188 57.2 0] 134.31 25.20
Santa Fe 9,683 20,044 265,876 - 7;954,109- 27.46 13.26 483 3.34 0 821.45 396.83
Yellowstone 8,918 20,784 754,969 (26,027) 1,219,048 84.66 36.32 429 61.9 (2.1) 136.70 58.65
Laurel 8,457 42,706 582,661 699,672 2,146,303 68.90 13.64 198 27.1 32.6 253.79 50.26

Total/ - 1,017,999 1,705,983 99,791,412 2,681,527 145,021,778 98.03 58.49 597 68.8 1.8 142.46 84.81

Average '

Scurce: ICC Annual Reports "P" Pipeline Ccmpanies,1976.

sz0g-y"



’ R-3025

losing;some 0oil through leaks, the leakage can move only in the
outward direction. The presence of large negative values

leads then to the inference that the account is some sort

of inventory-balancing artifice, rather than an actual
tabulation of physical losses. Additionally, it is difficult
to see how very large amounts of 0il can be lost without some
,kind of environmental impact becoming evident. This physically
evident consequence, together with the economic drive to
minimize losses, should insure that the companies would move
aggressively to inhibit ‘and stop leaks. '

In view of the foregoing, it is concluded that the
information at hand does not warrant an ERDA program in this
area. Moreover, it is unnecessary to develop further informat-
“ion, because the only method of active leak inhibition that has
been identified is by internal coating of the lines, and an
ERDA program in that area has already been recommended for
other reasons in Sections 8.2 and 3.7 above. It is thus
concluded that further research to understand the implications

of column 4 in the Tables is not needed for present purposes,

9.2.2. Leakage in Gas Pipelines

Statistics of interstate natural gas pipeline companies
for the year 1974 [FPC, 1974] show that transmission system
losses of all A and B companies (those with annual revenues of
$1 million or more) amounted to over 68 billion cu.ft. This
quantity constitutes 2.4% of the total gas receipts for that
year. At the current wellhead price, this loss would be worth
over $100 million, and its true national value, as defined in
Section 2.4 of report R-3024 of this series, is about $250

million.

Examination of the "unnaccounted for" figures reported
by the individual companies reveals that, unlike the o0il line

case, no negative values are reported. Also, in the case of
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gas, it is easy to see how significant leakage could- occur
without environmental impact or even detection. The reported
figures may thus represent significant physically real,

‘recoverable leakage.

In the past, a large part of this leakage was due to
venting during compressor blowdown. With the recent strong
emphasis upon conserving gas, the companies have generally

taken measures to retain most of this gas.

In Section 8.2 above, it was recommended that further
R & D be performed to realize the energy savings that are
potentially possible through the use of internal coatings.
This recommendation is reinforced by the possibilities for

leakage reduction which have just been identified.

There is ample evidence to show that internal coatings
are effective in reducing leakage in pipelines. 1In one case
involving a low-pressure gas pipeline, in-place coating reduced
leakage in a 2-mile section of an old line by over 93% [KUT, '67].
Before coating, the line was tested at 100 psi for a period of
24 hours. Leakage amounted to 292,000 cu.ft. daily. After
coating, the same test recorded a daily leakage rate of only
19,000 c.ft. It was concluded that néarly complete leakage
reduction might be achieved by using a larger application

pressure and a greater number of coating runs.

One type of coating receiving growing acceptance for
pipeline use is the epoxy coal tar coating, consiéting of a
blend of coal and epoxy resins with a curing agent. By blend-
ing the epoxy with coal tar, water resistance of the coating
is improved and, by application of sufficient thickness of the
epoxy coal tar coating, good leakage resistance is also

achieved.
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As noted earlier, further research would be required
to clarify the true significance of the réported figures of
unaccounted for gas. However, for present purposes, such
research is unnecessary, for the same reasons as in the case
of the oil lines. That is, the program of internal coating
demonstration that was recommended for other reaons in
Section 8.2 above will also inhibit leaks if it is conducted
with that objective in mind. Since a much thicker coating -
is required for a leak inhibitor than for a viscosity reducer,
in planning the demonstration program it may be desirable
to conduct further research into the amount of leakage that

exists.
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