Abstract
Vehicle routing problems (VRP) are one of the most studied problems in combinatorial optimization. In recent years, it has gained the attention of many researchers and business organizations not only in its classical application, but also because of the many environmental considerations that it is possible to consider. Objectives that aims to reduce fuel consumption or directly the emissions of CO2 and other greenhouse gases (GHG) have become widely adopted. Being so, many models that estimate emissions and fuel consumption have been proposed in the literature, accounting for different factors that affect fuel consumption in road transportation, such as payload, slope and travel speed. These comprehensive models, while providing very accurate results in modeling emissions and fuel consumption, are very dependent on numerous parameters and user inputs, many not easily retrievable by practitioners. In this way, a Practical Pollution-Routing Problem (PPRP) is a VRP that aims to reduce fuel consumption using simple and practical computations based on the Fuel Consumption Rate (FCR) of vehicles. Another important variant of the VRP that has also attracted recent attention is the time-dependent vehicle routing problem (TDVRP), in which the effects of congestion and travel speeds fluctuations during the day are taken into account when designing the delivery routes. A time-dependent approach to the PPRP, however, has not been found in the literature. Thus, our research addresses this gap and aims to propose a new variant of this problem called the Practical Pollution-Routing Problem with Time-Dependent speeds (PPRP-TD), as it has important value to practitioners interested in the reduction of fuel consumption and the hazardous effects caused by diesel trucks. We propose several instance problems based on real operations of a major retailer company that distributes in São Paulo, and also analyze the time dependent speeds of the São Paulo network. To solve both the PPRP and the PPRP-TD, we propose the GRASP-FESA solution method, which is an FCR-based Extended Savings Algorithm (FESA) combined with a Greedy Randomized Adaptive Search Procedure (GRASP) metaheuristic. In the case of the PPRP-TD, we also perform an extensive time-dependent scheduling for all given routes. The method is able to provide good results, although being computationally expensive in the case of large instances. Problemas de roteirização de veículos (VRP) são alguns dos mais estudados problemas na otimização combinatória. Recentemente, pesquisadores e organizações também tem prestado atenção não apenas em suas aplicações clássicas, mas também nas muitas considerações ambientais que podem ser consideradas. Objetivos que buscam reduzir o consumo de combustíveis fósseis e a emissão de gases do efeito estufa tem sido amplamente utilizados. Assim sendo, diversos modelos para estimar as emissões de gases poluentes e consumo de combustível vem sendo propostos, considerado diversos fatores que influenciam no consumo de combustível, como a carga transportada, inclinação da via e velocidade de tráfego. Esses modelos compreensivos, embora forneçam resultados bem precisos na modelagem de emissões e consumo de combustível, são muito dependentes de uma grande quantidade de parâmetros e entradas dos usuários, sendo que muitos não são facilmente obtidos. Dessa forma, um Problema de Pollution-Routing Prático é um VRP que busca reduzir o consumo de combustível usando cálculos simplificados para o consumo de combustível, baseados na taxa de consumo de combustível de diferentes classes de veículos. Outra importante variante do VRP é o VRP dependente do horário, em que os efeitos de congestionamento e velocidades de tráfego flutuantes ao longo do dia são considerados ao se construir as rotas de entrega. Entretanto, uma abordagem ao PPRP com velocidades dependentes do horário não foi encontrada na literatura. Portanto, nossa pesquisa endereça esta lacuna e busca propor uma nova variante deste problema, chamado Problema de Pollution-Routing Prático com velocidades Dependentes do Horário (PPRP-TD), devido ao importante valor para empresas e praticantes interessados em reduzir o consumo de combustível de suas frotas, assim como os graves efeitos causados ao ambiente por veículos movidos a combustíveis fósseis. São propostas diversas instâncias baseadas nas operações reais de um grande varejista em São Paulo, além de uma análise das velocidades deptendentes do horário na rede de São Paulo. Para resolver tanto o PPRP quanto o PPRP-TD, é proposto o método de solução GRASP-FESA, que é um FCR-based Extended Savings Algorithm (FESA) combinado com a metaheurística GRASP (Greedy Randomized Adaptive Search procedure). No caso do PPRP-TD, também é realizada uma programação extensiva dependente do horário para todas as rotas. O método é capaz de obter bons resultados, embora seja computacionalmente caro no caso de grandes instâncias.
Vehicle routing problems (VRP) are one of the most studied problems in combinatorial optimization. In recent years, it has gained the attention of many researchers and business organizations not only in its classical application, but also because of the many environmental considerations