Abstract

This work explores the use of stabilized finite element formulations for the incompressible Navier-Stokes equations to simulate turbulent flow problems. Turbulence is a challenging problem due to its complex and dynamic nature and its simulation if further complicated by the fact [...]

Abstract

In this paper, an adjoint-based error estimation and mesh adaptation framework is developed for the compressible inviscid flows. The algorithm employs the Finite Calculus (FIC) scheme for the numerical solution of the flow and discrete adjoint equations in the context of the Galerkin [...]

Abstract

A new implicit stabilized formulation for the numerical solution of the compressible NavierStokes equations is presented. The method is based on the Finite Calculus (FIC) scheme using the Galerkin finite element method (FEM) on triangular grids. Via the FIC formulation, two stabilization [...]

Abstract

This paper aims at the development of a new stabilization formulation based on the Finite Calculus (FIC) scheme for solving the Euler equations using the Galerkin finite element method (FEM) on unstructured triangular grids. The FIC method is based on expressing the balance of [...]

Abstract

We present a new stabilized finite element (FEM) formulation for incompressible flows based on the Finite Increment Calculus (FIC) framework (Oñate, 1998). [...]

Abstract

The aim of this work is to design monotonicity-preserving stabilized finite element techniques for transport problems as a blend of linear and nonlinear [...]