In this work, a domain decomposition strategy for non-linear hyper-reduced-order models is presented. The basic idea consists of restricting the reduced-order basis functions to the nodes belonging to each of the subdomains into which the physical domain is partitioned. An extension of the proposed domain decomposition strategy to a hybrid full-order/reduced-order model is then described. The general domain decomposition approach is particularized for the reduced-order finite element approximation of the incompressible Navier–Stokes equations with hyper-reduction. When solving the reduced incompressible Navier–Stokes equations, instabilities in the form of large gradients of the recovered reduced-order unknown at the subdomain interfaces may appear, which is the motivation for the design of additional stability terms giving rise to penalty matrices. Numerical examples illustrate the behavior of the proposed method for the simulation of the reduced-order systems, showing the capability of the approach to adapt to configurations which are not present in the original snapshot set.
Abstract
In this work, a domain decomposition strategy for non-linear hyper-reduced-order models is presented. The basic idea consists of restricting the reduced-order basis functions to the nodes [...]
In this paper we present a collection of techniques used to formulate a projection-based reduced order model (ROM) for zero Mach limit thermally coupled Navier–Stokes equations. The formulation derives from a standard proper orthogonal decomposition (POD) model reduction, and includes modifications to improve the drawbacks caused by the inherent non-linearity of the used Navier–Stokes equations: a hyper-ROM technique based on mesh coarsening; an implicit ROM subscales formulation based on a variational multi-scale (VMS) framework; and a Petrov–Galerkin projection necessary in the case of non-symmetric terms. At the end of the article, we test the proposed ROM formulation using 2D and 3D versions of the same example: a differentially heated cavity.
Abstract
In this paper we present a collection of techniques used to formulate a projection-based reduced order model (ROM) for zero Mach limit thermally coupled [...]
This work proposes a special type of Finite Element (FE) technology – the Empirical Interscale FE method – for modeling heterogeneous structures in the small strain regime, for both dynamic and static analyses. The method combines a domain decomposition framework, where interface conditions are established through “fictitious” frames, with dimensional hyperreduction at subdomain level. Similar to other multiscale FE methods, the structure is assumed to be partitioned into coarse-scale elements, each of these elements is equipped with a fine-scale subgrid, and the displacements of the boundaries of the coarse-scale elements are described by standard polynomial FE shape functions. The distinguishing feature of the proposed method is the employed “interscale” variational formulation, which directly relates coarse-scale nodal internal forces with fine-scale stresses, thereby avoiding the typical nested local/global problems that appear, in the nonlinear regime, in other multiscale methods. This distinctive feature, along with hyperreduction schemes for nodal internal and external body forces , greatly facilitate the implementation of the proposed formulation in existing FE codes for solid elements. Indeed, one only has to change the location and weights of the integration points, and to replace a few polynomial-based FE matrices with “empirical” operators, i.e., derived from the information obtained in appropriately chosen computational experiments. We demonstrate that the elements resulting from this formulation are not afflicted by volumetric locking when dealing with nearly-incompressible materials, and that they can handle non-matching fine-scale grids as well as curved structures. Last but not least, we show that, for periodic structures, this method converges upon mesh refinement to the solution delivered by classical first-order computational homogenization. Thus, although the method does not presuppose scale separation, it can represent solutions in this limiting case by taking sufficiently small coarse-scale elements.
Abstract
This work proposes a special type of Finite Element (FE) technology – the Empirical Interscale FE method – for modeling heterogeneous structures in the small strain regime, for both dynamic and static analyses. The method combines a domain decomposition framework, where [...]