En mecánica computacional, la visualización científica provee a investigadores e ingenieros de herramientas para el estudio de datos numéricos. La base de cada una de estas herramientas son las técnicas de visualización científicas que permiten la extracción de información a partir de los datos.

Este trabajo aborda las transformaciones necesarias a las técnicas de visualización científica convencionales para visualizar los resultados de la aplicación de métodos de partículas y métodos sin mallas. Para ello se tiene en cuenta la gran cantidad de datos resultantes de la aplicación de estos métodos y la presencia o no de información del contorno. Se desarrolla además una técnica de visualización para la representación de micro-fisuras y discontinuidades, las cuales constituyen el comienzo de las cadenas de fallos estructurales. Se escoge un método de generación de mallas por las facilidades que brinda y se adapta para la generación computacional de nubes de puntos para volúmenes y superficies.

Para cada una de las técnicas propuestas se estudian las ventajas de las estructuras de datos utilizadas y se muestran sus aportes a la computación gráfica y al análisis de resultados.

PDF file

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document


1. Brodlie, K.W., Scientific Visualization: Techniques and Applications, L.A.C. K.W. Brodlie, R.A. Earnshaw, J.R. Gallop, R.J. Hubbold, A.M. Mumford, C.D. Osland, P. Quarendon, Editor. 1992, Springer; 1 edition. p. 284.

2. Charles D. Hansen, C.R.J., Visualization Handbook. 2004: Academic Press, Inc. 1 edition. 984. 3. Richard S. Gallagher, S.P., Computer Visualization: Graphics Techniques for Engineering and Scientific Analysis. 1995: CRC‐Press, 1 edition.

4. Jeschke, S., Accelerating the Rendering Process Using Impostors, 2005, Institute of Computer Graphics and Algorithms, Vienna, University of Technology.

5. Tomas Akenine‐Moller, E.H., Naty Hoffman, Real‐Time Rendering. 2008: AK Peters, Third Edition.

6. Daniel Cohen‐Or, Y.L.C., Claudio T. Silva,Frodo Durand, A Survey of Visibility for Walkthrough Applications. IEEE Transactions on Visualization and Computer Graphics, 2003. 9: p. 412‐431.

7. Assarsson, U., et al., Optimized view frustum culling algorithms for bounding boxes. J. Graph. Tools, 2000. 5(1): p. 9‐22.

8. Kumar, S., et al., Hierarchical back‐face computation, in Proceedings of the eurographics workshop on Rendering techniques '961996, Springer‐Verlag: Porto, Portugal. p. 235‐ff.

9. Mel Slater, Y.C. View volume culling using a probabilistic cashing scheme. in in Proceedings of Framework for Immersive Virtual Enviroments FIVE. 1996.

10. Batagelo, H.C. and S.‐T. Wu, Dynamic Scene Occlusion Culling Using a Regular Grid, in Proceedings of the 15th Brazilian Symposium on Computer Graphics and Image Processing2002, IEEE Computer Society. p. 43‐50.

11. Georgios Papaioannou, A.G., Dimitrios Christopoulos, Efficient Occlusion Culling using Solid Occluders. Proceedings of the 14th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG), 2008.

12. Pantazopoulos, I. and S. Tzafestas, Occlusion Culling Algorithms: A Comprehensive Survey. J. Intell. Robotics Syst., 2002. 35(2): p. 123‐156.

13. Garland, P.S.H.a.M., Multiresolution Modeling for Fast Rendering. 1994: p. 43‐50.

14. David Luebke, M.R., Jonathan D. Cohen, Amitabh Varshney, Benjamin Watson, Robert Huebner Level of Detail for 3D Graphics. 2002: Morgan Kaufmann; 1 edition.

15. Clark, J.H., Hierarchical geometric models for visible‐surface algorithms. SIGGRAPH Comput. Graph., 1976. 10(2): p. 267‐267.

16. Ortega, E.O., Eugenio; Idelsohn, Sergio, A finite point method for adaptive three‐dimensional compressible flow calculations. International Journal for Numerical Methods in Fluids, 2009. 60(9): p. 937‐971.

17. Alexa, M., et al., Computing and Rendering Point Set Surfaces. IEEE Transactions on Visualization and Computer Graphics, 2003. 9(1): p. 3‐15.

18. Dey, T.K. and J. Sun, An adaptive MLS surface for reconstruction with guarantees, in Proceedings of the third Eurographics symposium on Geometry processing2005, Eurographics Association: Vienna, Austria. p. 43.

19. Fasshauer, G.F., Meshfree Approximation Methods with MATLAB. Vol. volume 6 of Interdisciplinary Mathematical Sciences. . 2007: World Scientific Publishing Co., Inc. .

20. Levin, D., The approximation power of moving least‐squares. Math. Comput., 1998. 67(224): p. 1517‐1531.

21. Bobach, T., Bertram, M., and Umlauf, G. Comparison of Voronoi Based Scattered Data Interpolation Schemes. . in International Conference on Visualization, Imaging and Image Processing. 2006.

22. Liu, G.R., Mesh Free Methods: Moving Beyond the Finite Element Method. 2003: CRC Press; 1 edition. 712.

23. Nielson, G.M., Scattered Data Modeling. IEEE Comput. Graph. Appl., 1993. 13(1): p. 60‐70.

24. Park, S.W., et al., Discrete Sibson Interpolation. IEEE Transactions on Visualization and Computer Graphics, 2006. 12(2): p. 243‐253.

25. Shepard, D., A two‐dimensional interpolation function for irregularly‐spaced data, in Proceedings of the 1968 23rd ACM national conference1968, ACM. p. 517‐524.

26. Ken W. Brodlie, M.R.A., and Keith Unsworth. , Constrained Visualization Using the Shepard Interpolation Family. Computer Graphics Forum, 2005. 24(4): p. 809‐820.

27. Nielson, R.F.a.G., Smooth interpolation of large sets of scattered data. International Journal for Numerical Methods in Engineering, 1980. 15: p. 1691‐1704.

28. Sibson, R., A vector identity for the Dirichlet tessellation. Mathematical Proceedings of the Cambridge Philosophical Society, 1980. 87(01): p. 151‐155.

29. Iske, A., Multiresolution Methods in Scattered Data Modelling. Lecture Notes in Computational Science and Engineering. Vol. 37. 2004. 182.

30. Floater, M.S. and A. Iske, Multistep scattered data interpolation using compactly supported radial basis functions. J. Comput. Appl. Math., 1996. 73(1‐2): p. 65‐78.

31. Wendland, H., Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Advances in Computational Mathematics, 1995. 4(1): p. 389‐396.

32. Jackins, C.L.a.T., S.L., Oct‐trees and their use in representing three dimensional objects. Computer Graphics and Image Processing, 1980. 14: p. 249‐270.

33. Wilhelms, J. and A.V. Gelder, Octrees for faster isosurface generation, in Proceedings of the 1990 workshop on Volume visualization1990, ACM: San Diego, California, United States. p. 57‐62.

34. A. Beygelzimer, S.K., and J. Langford. Cover Trees for Nearest Neighbor. in 23rd International Conference on Machine Learning. 2006. Pittsburgh, PA.

35. Panigrahy, R., Nearest Neighbor Search using Kd‐trees. Symposium A Quarterly Journal In Modern Foreign Literatures, 2006.

36. Anna Atramentov , S.M.L., Efficient Nearest Neighbor Searching for Motion Planning. 2002.

37. Arya, S., et al., An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM, 1998. 45(6): p. 891‐923.

38. Sagawa, R. Effective nearest neighbor search for aligning and merging range images in Fourth International Conference on 3‐D Digital Imaging and Modeling, 2003. 3DIM 2003. . 2003.

39. Lomet, D.B. and B. Salzberg, The hB‐tree: a multiattribute indexing method with good guaranteed performance. ACM Trans. Database Syst., 1990. 15(4): p. 625‐658.

40. Eppstein, M.B.a.D., Mesh Generation and Optimal Triangulation, in Computing in Euclidean Geometry, D.‐Z.D.a.F. Hwang, Editor 1992, World Scientific: Singapore. p. 23‐90.

41. Labelle, F., Tetrahedral Mesh Generation with Good Dihedral Angles Using Point Lattices, in Computer Science2007, University of California, Berkeley.

42. Yerry, M.A.a.S., Mark S, Automatic three‐dimensional mesh generation by the modified‐octree technique. International Journal for Numerical Methods in Engineering, 1984. 20: p. 1965‐‐1990.

43. Fuchs, A. Automatic Grid Generation with Almost regular Delaunay Tetrahedra. in 7th International Meshing Roundtable. 1998. Dearborn, Michigan, USA.

44. Naylor, D.J., Filling space with tetrahedra. International Journal for Numerical Methods in Engineering, 1999. 44(10): p. 1383‐1395.

45. Baker, B.S., E. Grosse, and C.S. Rafferty, Nonobtuse triangulation of polygons. Discrete Comput. Geom., 1988. 3(2): p. 147‐168.

46. Chew, L.P., Guaranteed‐Quality Triangular Meshes, 1989.

47. Bern, M., D. Eppstein, and J. Gilbert, Provably good mesh generation, in Proceedings of the 31st Annual Symposium on Foundations of Computer Science1990, IEEE Computer Society. p. 231‐241 vol.1.

48. Li, X.‐Y. and S.‐H. Teng, Generating well‐shaped Delaunay meshed in 3D, in Proceedings of the twelfth annual ACMSIAM symposium on Discrete algorithms2001, Society for Industrial and Applied Mathematics: Washington, D.C., United States. p. 28‐37.

49. Chew, L.P., Guaranteed‐quality Delaunay meshing in 3D (short version), in Proceedings of the thirteenth annual symposium on Computational geometry1997, ACM: Nice, France. p. 391‐393.

50. Mitchell, S.A. and S.A. Vavasis, Quality Mesh Generation in Higher Dimensions. SIAM J. Comput., 2000. 29(4): p. 1334‐1370.

51. Cheng, S.‐W. and T.K. Dey, Quality Meshing with Weighted Delaunay Refinement. SIAM J. Comput., 2004. 33(1): p. 69‐93.

52. Cheng, S.‐W., et al., Silver exudation. J. ACM, 2000. 47(5): p. 883‐904.

53. Labelle, F., Sliver removal by lattice refinement, in Proceedings of the twenty‐second annual symposium on Computational geometry2006, ACM: Sedona, Arizona, USA. p. 347‐356.

54. Francois Labelle, J.R.S., Isosurface stuffing: fast tetrahedral meshes with good dihedral angles. ACM Trans. Graph., 2007. 26(3): p. 57.

55. Robert, P.a.R., A. Influence of the Shape of the Tetrahedron on the Accuracy of the Estimate of the Current Density. in ESA `START' Conference. 1993. Aussois, France.

56. Burkardt, J. Computational Geometry Lab: TETRAHEDRONS. 2010.

57. Knoll, A., A Survey of Octree Volume Rendering Methods.

58. Timothy S. Newman. Ã. , H.Y., A survey of the marching cubes algorithm. Computers & Graphics, 2006. 30: p. 854‐879.

59. Bank, R.E. and L.R. Scott, On the conditioning of finite element equations with highly refined meshes. SIAM J. Numer. Anal., 1989. 26(6): p. 1383‐1394.

60. Shewchuk, J.R. What is a Good Linear Element? ‐ Interpolation, Conditioning, and Quality Measures in 11th International Meshing Roundtable. 2002.

61. Yu, J.W.a.Z., Adaptive and Quality Tetrahedral Mesh. Generation. 2011.

62. Freitag, L.A.a.C.O.‐G. A Comparison of Tetrahedral Mesh Improvement Techniques. in 5th International Meshing Roundtable. 1996. Sandia National Laboratories.

63. Dementiev, R., L. Kettner, and P. Sanders, STXXL: standard template library for XXL data sets. Softw. Pract. Exper., 2008. 38(6): p. 589‐637.

64. Piet Stroeven, M.S.L., Johannes Sluys, Huan He, ZhanqiGuo, Self‐healing capacity of concrete‐computer simulation study of unhydrated cement structure. Image Analysis and Stereology, 2007. 26: p. 137‐143.

65. Lorensen, W.E. and H.E. Cline, Marching cubes: A high resolution 3D surface construction algorithm. SIGGRAPH Comput. Graph., 1987. 21(4): p. 163‐169.

66. Nielson, G.M. and B. Hamann, The asymptotic decider: resolving the ambiguity in marching cubes, in Proceedings of the 2nd conference on Visualization '911991, IEEE Computer Society Press: San Diego, California. p. 83‐91.

67. Thomas Lewiner, H.L., Antônio Wilson Vieira, Geovan Tavares, Efficient implementation of marching cubes cases with topological guarantees. Journal of Graphics Tools, 2003. 8(2): p. 1‐15.

68. Hamilton, W.R., On quaternions, or on a new system of imaginaries in algebra. Philosophical Magazine, 1844. 25(3): p. 489‐495.

69. Vince, J., Geometric Algebra for Computer Graphics. 1st Edition ed. 2008: Springer.

70. Hanson, A.J., Visualizing Quaternions. 2006, San Francisco: The Morgan Kaufmann Series in Interactive 3D Technology. 498.

71. Zhen Chen, R.B., An Evaluation of the Material Point Method, S.N. Laboratories, Editor 2002: Albuquerque, New Mexico, California. p. 1‐40.

72. Monaghan, J.J., An introduction to SPH. Computer Physics Communications, , 1988. 48(1): p. 89‐96.

73. Lucy, L.B., A numerical approach to the testing of the fission hypothesis. Astronomical Journal, 1977. 82: p. 1013‐1024.

74. Gingold, R.A.M., J. J., Smoothed particle hydrodynamics ‐ Theory and application to non‐spherical stars. Monthly Notices of the Royal Astronomical Society, 1977. 181: p. 375‐389.

75. D. He, N.E., L. Cai, New statistic techniques for structure evaluation of particle packing. Materials Science and Engineering A, 2001. 298(1‐2): p. 209‐215.

76. Reunanen, M., Point‐Based Modeling. Seminar on Computer Graphics. Spring 2004.

77. Irvin Pérez Morales, R.R.V., Yordanis Pérez Brito, Harold Díaz‐Guzmán, Carlos A. Recarey Morfa, Procedure for packing generic particles for the discrete element method. Rev. Int. Métod. Numér. Cálc. Diseño Ing., 2009. 25(2): p. 95‐110.

78. Board, O.A.R., et al., OpenGL(R) Programming Guide: The Official Guide to Learning OpenGL(R), Version 2.1. 2007: Addison‐Wesley Professional. 928.

Back to Top

Document information

Published on 10/07/17
Submitted on 10/07/17

Licence: CC BY-NC-SA license

Document Score


Views 28
Recommendations 1

Share this document

claim authorship

Are you one of the authors of this document?