The empirical logarithmic Colebrook equation for hydraulic resistance in pipes implicitly considers the unknown flow friction factor. Its explicit approximations, used to avoid iterative computations, should be accurate but also computationally efficient. We present a rational approximate procedure that completely avoids the use of transcendental functions, such as logarithm or non-integer power, which require execution of the additional number of floating-point operations in computer processor units. Instead of these, we use only rational expressions that are executed directly in the processor unit. The rational approximation was found using a combination of a Padé approximant and artificial intelligence (symbolic regression). Numerical experiments in Matlab using 2 million quasi-Monte Carlo samples indicate that the relative error of this new rational approximation does not exceed 0.866%. Moreover, these numerical experiments show that the novel rational approximation is approximately two times faster than the exact solution given by the Wright omega function.

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 01/01/2020

DOI: 10.3390/math8010026
Licence: CC BY-NC-SA license

Document Score


Views 0
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?